Loading...
Lower Cape Fear River Program 2013 reportEnvironmental Assessment of the Lower Cape Fear River System, 2013 By Michael A. Mallin, Matthew R. McIver and James F. Merritt August 2014 CMS Report No. 14-02 Center for Marine Science University of North Carolina Wilmington Wilmington, N.C. 28409 Executive Summary Multiparameter water sampling for the Lower Cape Fear River Program (LCFRP) has been ongoing since June 1995. Scientists from the University of North Carolina Wilmington’s (UNCW) Aquatic Ecology Laboratory perform the sampling effort. The LCFRP currently encompasses 33 water sampling stations throughout the lower Cape Fear, Black, and Northeast Cape Fear River watersheds. The LCFRP sampling program includes physical, chemical, and biological water quality measurements and analyses of the benthic and epibenthic macroinvertebrate communities, and has in the past included assessment of the fish communities. Principal conclusions of the UNCW researchers conducting these analyses are presented below, with emphasis on water quality of the period January - December 2013. The opinions expressed are those of UNCW scientists and do not necessarily reflect viewpoints of individual contributors to the Lower Cape Fear River Program. The mainstem lower Cape Fear River is a 6th order stream characterized by periodically turbid water containing moderate to high levels of inorganic nutrients. It is fed by two large 5th order blackwater rivers (the Black and Northeast Cape Fear Rivers) that have low levels of turbidity, but highly colored water with less inorganic nutrient content than the mainstem. While nutrients are reasonably high in the river channels, major algal blooms have until recently been rare because light is attenuated by water color or turbidity, and flushing is usually high (Ensign et al. 2004). During periods of low flow (as in 2008-2012) algal biomass as chlorophyll a increases in the river because lower flow causes settling of more solids and improves light conditions for algal growth. Periodically major algal blooms are seen in the tributary stream stations, some of which are impacted by point source discharges. Below some point sources, nutrient loading can be high and fecal coliform contamination occurs. Other stream stations drain blackwater swamps or agricultural areas, some of which periodically show elevated pollutant loads or effects (Mallin et al. 2001). Average annual dissolved oxygen (DO) levels at the river channel stations for 2012 were slightly lower than the average for 1995-2011. Dissolved oxygen levels were lowest during the summer and early fall, often falling below the state standard of 5.0 mg/L at several river and upper estuary stations. There is a dissolved oxygen sag in the main river channel that begins at Station DP below a paper mill discharge and near the Black River input, and persists into the mesohaline portion of the estuary. Mean oxygen levels were highest at the upper river stations NC11 and AC and in the middle to lower estuary at stations M35 to M18. Lowest mainstem average 2013 DO levels occurred at the lower river and upper estuary stations DP, IC, NAV, HB, BRR and M61 (6.7-6.8 mg/L). As the water reaches the lower estuary higher algal productivity, mixing and ocean dilution help alleviate oxygen problems. The Northeast Cape Fear and Black Rivers generally have lower DO levels than the mainstem Cape Fear River. These rivers are classified as blackwater systems because of their tea colored water. The Northeast Cape Fear River generally has lower dissolved oxygen than the Black River; as such, in 2013 Stations NCF117 and B210, representing those rivers, had average DO concentrations of 6.1 and 6.4 mg/L, respectively. Several stream stations were severely stressed in terms of low dissolved oxygen during the year 2013. Stations NAV, HB, BRR, and M61 were all below 5.0 mg/L on 33% or more of occasions sampled, and IC, DP and M54 were below on 25% of occasions sampled. Considering all sites sampled in 2013, we rated 25% as poor for dissolved oxygen, 19% as fair, and 59% as good, an improvement from 2012 Annual mean turbidity levels for 2013 were lower than the long-term average in all estuary stations. Highest mean turbidities were at NC11-DP, plus NAV (11-12 NTU) with turbidities generally low in the middle to lower estuary. The estuarine stations did not exceed the estuarine turbidity standard on our 2013 sampling trips. Turbidity was considerably lower in the blackwater tributaries (Northeast Cape Fear River and Black River) than in the mainstem river. Average turbidity levels were low in the freshwater streams, with the exception of one excursion to 90 NTU in December at LRC. Regarding stream stations, chronic or periodic high nitrate levels were found at a number of sites, including ROC (Rockfish Creek), 6RC (Six Runs Creek), PB (panther Branch), NC403 and GCO (Great Coharie Creek). Average chlorophyll a concentrations across all sites were low in 2013. We note the highest levels in the river and estuary typically occur in mid-summer; during the growing season May-September river flow as measured by USGS at Lock and Dam #1 was much higher for 2013 compared with the 1995-2012 long-term average (6,975 CFS compared with 3,361 CFS). Higher flows restrict algal bloom formation by maintaining relatively high turbidity; thus troublesome cyanobacteria (i.e. blue-green algal blooms) did not occur in the Cape Fear River during 2013. Stream algal blooms exceeding 20 µg/L in 2012 occurred at ANC, NC403, PB and LRC. A few minor algal blooms occurred at stream stations PB and ANC. Several stream stations, particularly PB, BRN, HAM (Hammond Creek), GS, N403, ROC, LRC and ANC showed high fecal coliform bacteria counts on a number of occasions. For the 2013 period UNCW rated 100% of the stations as good in terms of chlorophyll a and turbidity. Fecal coliform bacteria counts were high in the system in 2013 and the lower estuary had high enterococcus on some occasions. For bacterial water quality overall, 34% of the sites rated as poor, 28% as fair, and 38% as good in 2013. Using the 5.0 mg/L DO standard for the mainstem river stations, and the 4.0 mg/L “swamp water” DO standard for the stream stations and blackwater river stations, 44% of the sites were rated poor or fair for dissolved oxygen. In addition, by our UNCW standards excessive nitrate and phosphorus concentrations were problematic at a number of stations (Chapter 3). Table of Contents 1.0 Introduction...........................................................................………...............…........1 1.1 Site Description................................................………....................................2 1.2 Report Organization………………………………………………………..……..3 2.0 Physical, Chemical, and Biological Characteristics of the Lower Cape Fear River and Estuary………………………………………………..……………………................7 Physical Parameters..…......................………..........................................……....10 Chemical Parameters…....……..……….........................................................…..14 Biological Parameters.......……….....……......................................................…..17 1.0 Introduction Michael A. Mallin Center for Marine Science University of North Carolina Wilmington The Lower Cape Fear River Program is a unique science and education program that has a mission to develop an understanding of processes that control and influence the ecology of the Cape Fear River, and to provide a mechanism for information exchange and public education. This program provides a forum for dialogue among the various Cape Fear River user groups and encourages interaction among them. Overall policy is set by an Advisory Board consisting of representatives from citizen’s groups, local government, industries, academia, the business community, and regulatory agencies. This report represents the scientific conclusions of the UNCW researchers participating in this program and does not necessarily reflect opinions of all other program participants. This report focuses on the period January through December 2013. The scientific basis of the LCFRP consists of the implementation of an ongoing comprehensive physical, chemical, and biological monitoring program. Another part of the mission is to develop and maintain a data base on the Cape Fear basin and make use of this data to develop management plans. Presently the program has amassed an 18-year (1995-2013) data base that is available to the public, and is used as a teaching tool for programs like UNCW’s River Run. Using this monitoring data as a framework the program goals also include focused scientific projects and investigation of pollution episodes. The scientific aspects of the program are carried out by investigators from the University of North Carolina Wilmington Center for Marine Science. The monitoring program was developed by the Lower Cape Fear River Program Technical Committee, which consists of representatives from UNCW, the North Carolina Division of Water Quality, The NC Division of Marine Fisheries, the US Army Corps of Engineers, technical representatives from streamside industries, the Cape Fear Public Utility Authority, Cape Fear Community College, Cape Fear River Watch, the North Carolina Cooperative Extension Service, the US Geological Survey, forestry and agriculture organizations, and others. This integrated and cooperative program was the first of its kind in North Carolina. Broad-scale monthly water quality sampling at 16 stations in the estuary and lower river system began in June 1995 (UNCW Aquatic Ecology Laboratory, directed by Dr. Michael Mallin). Sampling was increased to 34 stations in February of 1996, 35 stations in February 1998, and 36 stations in 2005, then lowered to 33 in 2011. The Lower Cape Fear River Program added another component concerned with studying the benthic macrofauna of the system in 1996. This component is directed by Dr. Martin Posey and Mr. Troy Alphin of the UNCW Biology Department and includes the benefit of additional data collected by the Benthic Ecology Laboratory under Sea Grant and NSF sponsored projects in the Cape Fear Estuary. These data are collected and analyzed depending upon the availability of funding. The third major biotic component (added in 1 January 1996) was an extensive fisheries program directed by Dr. Mary Moser of the UNCW Center for Marine Science Research, with subsequent (1999) overseeing by Mr. Michael Williams and Dr. Thomas Lankford of UNCW-CMS. This program involved cooperative sampling with the North Carolina Division of Marine Fisheries and the North Carolina Wildlife Resources Commission. The fisheries program ended in December 1999, but was renewed with additional funds from the Z. Smith Reynolds Foundation from spring – winter 2000. The regular sampling that was conducted by UNCW biologists was assumed by the North Carolina Division of Marine Fisheries. 1.1. Site Description The mainstem of the Cape Fear River is formed by the merging of the Haw and the Deep Rivers in Chatham County in the North Carolina Piedmont. However, its drainage basin reaches as far upstream as the Greensboro area (Fig. 1.1). The mainstem of the river has been altered by the construction of several dams and water control structures. In the coastal plain, the river is joined by two major tributaries, the Black and the Northeast Cape Fear Rivers (Fig. 1.1). These 5th order blackwater streams drain extensive riverine swamp forests and add organic color to the mainstem. The watershed (about 9,164 square miles) is the most heavily industrialized in North Carolina with 203 permitted wastewater discharges with a permitted flow of approximately 429 million gallons per day, and (as of 2010) over 2.07 million people residing in the basin (NCDENR Basinwide Information Management System (BIMS) & 2010 Census). Approximately 23% of the land use in the watershed is devoted to agriculture and livestock production (2006 National Land Cover Dataset), with livestock production dominated by swine and poultry operations. Thus, the watershed receives considerable point and non-point source loading of pollutants. However, the estuary is a well-flushed system, with flushing time ranging from 1 to 22 days with a median flushing time of about seven days, much shorter than the other large N.C. estuaries to the north (Ensign et al. 2004). Water quality is monitored by boat at eight stations in the Cape Fear Estuary (from Navassa to Southport) and one station in the Northeast Cape Fear Estuary (Table 1.1; Fig. 1.1). We note that after July 2011 sampling was discontinued at stations M42 and SPD, per agreement with the North Carolina Division of Water Quality; and in 2012 sampling was expanded at Smith Creek at the Castle Hayne Road bridge (Table 1.1) and initiated at a new site along the South River (SR-WC). Riverine stations sampled by boat include NC11, AC, DP, IC, and BBT (Table 1.1; Fig. 1.1). NC11 is located upstream of any major point source discharges in the lower river and estuary system, and is considered to be representative of water quality entering the lower system (we note that the City of Wilmington and portions of Brunswick County get their drinking water from the river just upstream of Lock and Dan #1). Station BBT is located on the Black River between Thoroughfare (a stream connecting the Cape Fear and Black Rivers) and the mainstem Cape Fear, and is influenced by both rivers. We consider B210 and NCF117 to represent water quality entering the lower Black and Northeast Cape Fear Rivers, respectively. Data has also been collected at stream and river 2 stations throughout the Cape Fear, Northeast Cape Fear, and Black River watersheds (Table 1.1; Fig. 1.1; Mallin et al. 2001). 1.2. Report Organization This report contains two sections assessing LCFRP data. Section 2 presents an overview of physical, chemical, and biological water quality data from the 33 individual stations, and provides tables of raw data as well as figures showing spatial or temporal trends. The LCFRP has a website that contains maps and an extensive amount of past water quality, benthos, and fisheries data gathered by the Program available at: www.uncw.edu/cms/aelab/LCFRP/. References Cited Ensign, S.H., J.N. Halls and M.A. Mallin. 2004. Application of digital bathymetry data in an analysis of flushing times of two North Carolina estuaries. Computers and Geosciences 30:501-511. Mallin, M.A., S.H. Ensign, M.R. McIver, G.C. Shank and P.K. Fowler. 2001. Demographic, landscape, and meteorological factors controlling the microbial pollution of coastal waters. Hydrobiologia 460:185-193. NCDENR. 2005. Cape Fear River Basinwide Water Quality Plan. North Carolina Department of Environment and Natural Resources, Division of Water Quality/Planning, Raleigh, NC, 27699-1617. 3 Table 1.1 Description of sampling locations in Lower Cape Fear River Watershed, 2013 Collected by Boat AEL StationDWR Station #Description Comments CountyLatLonStream Class.HUC NC11B8360000 Cape Fear River at NC 11 nr East Arcadia Below Lock and Dam 1, Represents water entering lower basin Bladen34.3969-78.2675WS-IV Sw03030005 LVC2B8441000 Livingston Creek at Momentive Walkway nr Acme DWR ambient station, Downstream of Momentive Columbus34.3353-78.2011C Sw03030005 ACB8450000 Cape Fear River at Neils Eddy Landing nr Acme 1 mile below IP, DWR ambient station Columbus34.3555-78.1794C Sw03030005 DPB8465000 Cape Fear River at Intake nr Hooper Hill AT DAK intake, just above confluence with Black R.Brunswick34.3358-78.0534C Sw03030005 BBT Black River below Lyons ThorofareUNCW AEL station Pender34.3513-78.0490C Sw ORW+0303005 ICB9030000 Cape Fear River ups Indian Creek nr Phoenix Downstream of several point source discharges Brunswick34.3021-78.0137C Sw0303005 NAVB9050025 Cape Fear River dns of RR bridge at Navassa Downstream of several point source discharges Brunswick34.2594-77.9877SC0303005 HBB9050100 Cape Fear River at S. end of Horseshoe Bend nr Wilmington Upstream of confluence with NE Cape Fear River Brunswick34.2437-77.9698SC0303005 BRRB9790000 Brunswick River dns NC 17 at park nr Belville Near Belville dischargeBrunswick34.2214-77.9787SC03030005 M61B9800000 Cape Fear River at Channel Marker 61 at Wilmington Downstream of several point source discharges New Hanover 34.1938-77.9573SC03030005 M54B9795000 Cape Fear River at Channel Marker 54 Downstream of several point source discharges New Hanover 34.1393-77.946SC03030005 M35B9850100 Cape Fear River at Channel Marker 35 Upstream of Carolina Beach discharge Brunswick34.0335-77.937SC03030005 M23B9910000 Cape Fear River at Channel Marker 23 Downstream of Carolina Beach discharge Brunswick33.9456-77.9696SA HQW03030005 M18B9921000 Cape Fear River at Channel Marker 18 Near mouth of Cape Fear RiverBrunswick33.913-78.017SC03030005 NCF6B9670000NE Cape Fear nr Wrightsboro Downstream of several point source discharges New Hanover 34.3171-77.9538C Sw0303007 Collected by Land 6RCB8740000Six Runs Creek at SR 1003 nr Ingold Upstream of Black River, CAFOs in watershed Sampson34.7933-78.3113C Sw ORW+03030006 LCOB8610001 Little Coharie Creek at SR 1207 nr Ingold Upstream of Great Coharie, CAFOs in watershed Sampson34.8347-78.3709C Sw03030006 GCOB8604000 Great Coharie Creek at SR 1214 nr Butler Crossroads Downstream of Clinton, CAFOs in watershed Sampson34.9186-78.3887C Sw03030006 SRB8470000South River at US 13 nr CooperDownstream of DunnSampson35.156-78.6401C Sw03030006 BRNB8340050 Browns Creek at NC87 nr Elizabethtown CAFOs in watershedBladen34.6136-78.5848C03030005 HAMB8340200 Hammond Creek at SR 1704 nr Mt. Olive CAFOs in watershedBladen34.5685-78.5515C03030005 4 Collected by Land 6RCSix Runs Creek at SR 1003 nr IngoldB8740000Sampson34.7933-78.3113C Sw ORW+03030006 LCO Little Coharie Creek at SR 1207 nr Ingold B8610001Sampson34.8347-78.3709C Sw03030006 GCO Great Coharie Creek at SR 1214 nr Butler Crossroads B8604000Sampson34.9186-78.3887C Sw03030006 SRSouth River at US 13 nr CooperB8470000Sampson35.156-78.6401C Sw03030006 BRN Browns Creek at NC87 nr Elizabethtown B8340050Bladen34.6136-78.5848C03030005 HAM Hammond Creek at SR 1704 nr Mt. Olive B8340200Bladen34.5685-78.5515C03030005 COLColly Creek at NC 53 at CollyB8981000Bladen34.4641-78.2569C Sw03030006 B210Black River at NC 210 at Still BluffB9000000Pender34.4312-78.1441C Sw ORW+03030006 NC403 NE Cape Fear River at NC 403 nr Williams B9090000Duplin35.1784-77.9807C Sw0303007 PBPanther Branch (Creek) nr FaisonB9130000Duplin35.1345-78.1363C Sw0303007 GS Goshen Swamp at NC 11 and NC 903 nr Kornegay B9191000Duplin35.0281-77.8516C Sw0303007 SAR NE Cape Fear River SR 1700 nr Sarecta B9191500Duplin34.9801-77.8622C Sw0303007 ROCRockfish Creek at US 117 nr WallaceB9430000Duplin34.7168-77.9795C Sw0303007 LRC Little Rockfish Creek at NC 11 nr Wallace B9460000Duplin34.7224-77.9814C Sw0303007 ANCAngola Creek at NC 53 nr Maple HillB9490000Pender34.6562-77.7351C Sw0303007 SR WC South River at SR 1007 (Wildcat/Ennis Bridge Road)B8920000Sampson34.6402-78.3116C Sw ORW+03030006 NCF117 NE Cape Fear River at US 117 at Castle Hayne B9580000New Hanover34.3637-77.8965B Sw0303007 SC-CH Smith Creek at US 117 and NC 133 at Wilmington B9720000New Hanover34.2586-77.9391C Sw0303007 5 Figure 1.1. Map of the Lower Cape Fear River system and the LCFRP sampling stations. 6 2.0 Physical, Chemical, and Biological Characteristics of the Lower Cape Fear River and Estuary Michael A. Mallin and Matthew R. McIver Aquatic Ecology Laboratory Center for Marine Science University of North Carolina Wilmington 2.1 - Introduction This section of the report includes a discussion of the physical, chemical, and biological water quality parameters, concentrating on the January-December 2013 Lower Cape Fear River Program monitoring period. These parameters are interdependent and define the overall condition of the river. Physical parameters measured during this study included water temperature, dissolved oxygen, field turbidity and laboratory turbidity, total suspended solids (TSS), salinity, conductivity, pH and light attenuation. The chemical makeup of the Cape Fear River was investigated by measuring the magnitude and composition of nitrogen and phosphorus in the water. Three biological parameters including fecal coliform bacteria or enterococcus bacteria, chlorophyll a and biochemical oxygen demand were examined. 2.2 - Materials and Methods All samples and field parameters collected for the estuarine stations of the Cape Fear River (NAV down through M18) were gathered on an ebb tide. This was done so that the data better represented the river water flowing downstream through the system rather than the tidal influx of coastal ocean water. Sample collection and analyses were conducted according to the procedures in the Lower Cape Fear River Program Quality Assurance/Quality Control (QA/QC) manual. Technical Representatives from the LCFRP Technical Committee and representatives from the NC Division of Water Quality inspect UNCW laboratory procedures and periodically accompany field teams to verify proper procedures are followed. By agreement with N.C. Division of Water Quality, after June 2011 sampling was discontinued at stations M42 and SPD, but full sampling was added at SC-CH and SR-WC in 2012. We note the Town of Burgaw left the program as of 2013 and Stations BCRR and BC117 are no longer being sampled. Physical Parameters Water Temperature, pH, Dissolved Oxygen, Turbidity, Light, Salinity, Conductivity Field parameters other than light attenuation were measured at each site using a YSI 6920 (or 6820) multi-parameter water quality sonde displayed on a YSI 650 MDS. Each parameter is measured with individual probes on the sonde. At stations sampled by boat (see Table 1.1) physical parameters were measured at 0.1 m and at the bottom (up to 12 m). Occasionally, high flow prohibited the sonde from reaching the actual bottom and 7 measurements were taken as deep as possible. At the terrestrially sampled stations (i.e. from bridges or docks) the physical parameters were measured at a depth of 0.1 m. The Aquatic Ecology Laboratory at the UNCW CMS is State-certified by the N.C. Division of Water Quality to perform field parameter measurements. The light attenuation coefficient k was determined from data collected on-site using vertical profiles obtained by a Li-Cor LI- 1000 integrator interfaced with a Li-Cor LI-193S spherical quantum sensor. Chemical Parameters Nutrients A local State-certified analytical laboratory was contracted to conduct all chemical analyses except for orthophosphate, which is performed at CMS. The following methods detail the techniques used by CMS personnel for orthophosphate analysis. Orthophosphate (PO4-3) Water samples were collected ca. 0.1 m below the surface in triplicate in amber 125 mL Nalgene plastic bottles and placed on ice. In the laboratory 50 mL of each triplicate was filtered through separate1.0 micron pre-combusted glass fiber filters, which were frozen and later analyzed for chlorophyll a. The triplicate filtrates were pooled in a glass flask, mixed thoroughly, and approximately 100 mL was poured into a 125 mL plastic bottle to be analyzed for orthophosphate. Samples were frozen until analysis. Orthophosphate analyses were performed in duplicate using an approved US EPA method for the Bran-Lubbe AutoAnalyzer (Method 365.5). In this technique the orthophosphate in each sample reacts with ammonium molybdate and anitmony potassium tartrate in an acidic medium (sulfuric acid) to form an anitmony-phospho-molybdate complex. The complex is then reacted with ascorbic acid and forms a deep blue color. The intensity of the color is measured at a wavelength of 880 nm by a colorimeter and displayed on a chart recorder. Standards and spiked samples were analyzed for quality assurance. Biological Parameters Fecal Coliform Bacteria / Enterococcus Fecal coliform bacteria were analyzed by a State-certified laboratory contracted by the LCFRP. Samples were collected approximately 0.1 m below the surface in sterile plastic bottles provided by the contract laboratory and placed on ice for no more than six hours before analysis. After August 2011 the fecal coliform analysis was changed to Enterococcus in the estuarine stations downstream of NAV and HB (Stations BRR, M61, M35, M23 and M18). 8 Chlorophyll a The analytical method used to measure chlorophyll a is described in Welschmeyer (1994) and was performed by CMS personnel. Chlorophyll a concentrations were determined utilizing the 1.0 micron filters used for filtering samples for orthophosphate analysis. All filters were wrapped individually in foil, placed in airtight containers and stored in the freezer. During analysis each filter was immersed in 10 mL of 90% acetone for 24 hours, which extracts the chlorophyll a into solution. Chlorophyll a concentration of each solution was measured on a Turner 10-AU fluorometer. The fluorometer uses an optimal combination of excitation and emission bandwidth filters which reduces the errors inherent in the acidification technique. Biochemical Oxygen Demand (BOD) Five sites were originally chosen for BOD analysis. One site was located at NC11, upstream of International Paper, and a second site was at AC, about 3 miles downstream of International Paper (Fig.1.1). Two sites were located in blackwater rivers (NCF117 and B210) and one site (BBT) was situated in an area influenced by both the mainstem Cape Fear River and the Black River. For the sampling period May 2000-April 2004 additional BOD data were collected at stream stations 6RC, LCO, GCO, BRN, HAM and COL in the Cape Fear and Black River watersheds. In May 2004 those stations were dropped and sampling commenced at ANC, SAR, GS, N403, ROC and BC117 in the Northeast Cape Fear River watershed for several years. The procedure used for BOD analysis is Method 5210 in Standard Methods (APHA 1995). Samples were analyzed for both 5-day and 20- day BOD. During the analytical period, samples were kept in airtight bottles and placed in an incubator at 20o C. All experiments were initiated within 6 hours of sample collection. Samples were analyzed in duplicate. Dissolved oxygen measurements were made using a YSI Model 5000 meter that was air-calibrated. No adjustments were made for pH since most samples exhibited pH values within or very close to the desired 6.5-7.5 range (pH is monitored during the analysis as well); a few sites have naturally low pH and there was no adjustment for these samples because it would alter the natural water chemistry and affect true BOD. Data are presented within for the five original sites. Parameter Method NC DWR Certified Water Temperature SM 2550B-2000 Yes Dissolved Oxygen SM 4500O G-2001 Yes pH SM 4500 H B-2000 Yes Specific Conductivity SM 2510 B-1997 Yes Lab Turbidity SM 2130 B-2001 Yes Field Turbidity SM 2130 B-2001 No Chlorophyll a Welschmeyer 1994 No 9 Biochemical Oxygen Demand SM 5210 B-2001 No Parameter Method NC DWR Certified Total Nitrogen By addition Nitrate + Nitrite EPA 353.2 Rev 2.0 1993 Yes Total Kjeldahl Nitrogen EPA 351.2 Rev 2.0 1993Yes Ammonia Nitrogen EPA 350.1 Rev 2.0 1993 Yes Total Phosphorus SM 4500 P E-1999 Yes Orthophosphate EPA 365.5 No Fecal Coliform SM 9222 D-1997 Yes Enterococcus Enterolert IDEXX Yes 2.3 - Results and Discussion This section includes results from monitoring of the physical, biological, and chemical parameters at all stations for the time period January-December 2013. Discussion of the data focuses both on the river channel stations and stream stations, which sometimes reflect poorer water quality than mainstem stations. The contributions of the two large blackwater tributaries, the Northeast Cape Fear River and the Black River, are represented by conditions at NCF117 and B210, respectively. The Cape Fear Region did not experience any significant hurricane activity during this monitoring period (after major hurricanes in 1996, 1998, and 1999). Therefore this report reflects low to medium to somewhat elevated flow conditions for the Cape Fear River and Estuary. Physical Parameters Water temperature Water temperatures at all stations ranged from 3.5 to 28.9oC, and individual station annual averages ranged from 15.4 to 19.5oC (Table 2.1). Highest temperatures occurred during July and August and lowest temperatures during January. Stream stations were generally cooler than river stations, most likely because of shading and lower nighttime air temperatures affecting the shallower waters. Salinity Salinity at the estuarine stations (NAV through M18; also NCF6 in the Northeast Cape Fear River) ranged from 0.1 to 34.5 practical salinity units (psu) and station annual means ranged from 1.7 to 25.5 psu (Table 2.2). Lowest salinities occurred in mid-summer and highest salinities occurred in late fall and winter. The annual mean salinity for 2013 was 10 similar to that of the seventeen-year average for 1995-2012 for all of the estuarine stations (Figure 2.1). Two stream stations, NC403 and PB, had occasional oligohaline conditions due to discharges from pickle production facilities. SC-CH is a tidal creek that enters the Northeast Cape Fear River upstream of Wilmington and salinity there ranged widely, from 0.1 to 15.9 psu. Conductivity Conductivity at the estuarine stations ranged from 0.07 to 52.4 mS/cm and from 0.07 to 6.93 mS/cm at the freshwater stations (Table 2.3). Temporal conductivity patterns followed those of salinity. Dissolved ionic compounds increase the conductance of water, therefore, conductance increases and decreases with salinity, often reflecting river flow conditions due to rainfall. Stations PB and NC403 are below industrial discharges, and often have elevated conductivity. Smith Creek (SC-CH) is an estuarine tidal creek and the conductivity values reflect this (Table 2.3). pH pH values ranged from 3.6 to 8.2 and station annual means ranged from 4.0 to 8.0 (Table 2.4). pH was typically lowest upstream due to acidic swamp water inputs and highest downstream as alkaline seawater mixes with the river water. Low pH values at COL predominate because of naturally acidic blackwater inputs at this near-pristine stream station. We also note that LRC had an unusually high pH level (8.1) in April 2013 (Table 2.4). Dissolved Oxygen Dissolved oxygen (DO) problems have been a major water quality concern in the lower Cape Fear River and its estuary, and several of the tributary streams (Mallin et al. 1999; 2000; 2001a; 2001b; 2002a; 2002b; 2003; 2004; 2005a; 2006a; 2006b; 2007; 2008; 2009; 2010; 2011; 2012; 2013). Surface concentrations for all sites in 2013 ranged from 0.4 to 12.5 mg/L and station annual means ranged from 5.0 to 9.9 mg/L (Table 2.5). Average annual DO levels at the river channel and estuarine stations for 2013 were similar to the average for 1995-2012 (Figure 2.2). River dissolved oxygen levels were lowest during the summer and early fall (Table 2.5), often falling below the state standard of 5.0 mg/L at several river and upper estuary stations. Working synergistically to lower oxygen levels are two factors: lower oxygen carrying capacity in warmer water and increased bacterial respiration (or biochemical oxygen demand, BOD), due to higher temperatures in summer. Unlike other large North Carolina estuaries (the Neuse, Pamlico and New River) the Cape Fear estuary rarely suffers from dissolved oxygen stratification. This is because, despite salinity stratification the oxygen remains well mixed due to strong estuarine gravitational circulation and high freshwater inputs (Lin et al. 2006). Thus, hypoxia in the Cape Fear is present throughout the water column. 11 There is a dissolved oxygen sag in the main river channel that begins at DP below a paper mill discharge and persists into the mesohaline portion of the estuary (Fig. 2.2). Mean oxygen levels were highest at the upper river stations NC11 and AC and in the low-to- middle estuary at stations M35 to M18. Lowest mainstem mean 2013 DO levels occurred at the river and upper estuary stations IC, NAV, HB, BRR and M61 (6.7-6.8 mg/L). Stations NAV, HB, BRR, and M61 were all below 5.0 mg/L on 33% or more of occasions sampled, and IC, DP and M54 were below on 25% of occasions sampled, an improvement from 2012. Based on number of occasions the river stations were below 5 mg/L UNCW rated NAV, HB, BRR, and M61 as poor for 2013; the mid to lower estuary stations were rated as fair to good. Discharge of high BOD waste from the paper/pulp mill just above the AC station (Mallin et al. 2003), as well as inflow of blackwater from the Northeast Cape Fear and Black Rivers, helps to diminish oxygen in the lower river and upper estuary. Additionally, algal blooms periodically form behind Lock and Dam #1 (including the blue- green algal blooms in recent years), and the chlorophyll a they produce is strongly correlated with BOD at Station NC11 (Mallin et al. 2006b); thus the blooms do contribute to lower DO in the river. As the water reaches the lower estuary higher algal productivity, mixing and ocean dilution help alleviate oxygen problems. The Northeast Cape Fear and Black Rivers generally have lower DO levels than the mainstem Cape Fear River (NCF117 2013 mean = 6.1, NCF6 = 6.5, B210 2013 mean = 6.4) . These rivers are classified as blackwater systems because of their tea colored water. As the water passes through swamps en route to the river channel, tannins from decaying vegetation leach into the water, resulting in the observed color. Decaying vegetation on the swamp floor has an elevated biochemical oxygen demand and usurps oxygen from the water, leading to naturally low dissolved oxygen levels. Runoff from concentrated animal feeding operations (CAFOs) may also contribute to chronic low dissolved oxygen levels in these blackwater rivers (Mallin et al. 1998; 1999; 2006; Mallin 2000). We note that phosphorus and nitrogen (components of animal manure) levels have been positively correlated with BOD in the blackwater rivers and their major tributaries (Mallin et al. 2006b). Several stream stations were severely stressed in terms of low dissolved oxygen during the year 2013. Station GS had DO levels below 4.0 mg/L 42% of the occasions sampled, with NC403, SR and LVC2 at 33% (Table 2.5). Some of this can be attributed to low summer water conditions and some potentially to CAFO runoff; however point-source discharges also likely contribute to low dissolved oxygen levels at NC403 and possibly SR, especially via nutrient loading (Mallin et al. 2001a; 2002a; 2004). Hypoxia is thus a continuing and widespread problem, with 44% of the sites impacted in 2013 (an improvement from 2012 however). Field Turbidity Field turbidity levels ranged from 0 to 90 Nephelometric turbidity units (NTU) and station annual means ranged from 1 to 13 NTU (Table 2.6). The State standard for estuarine turbidity is 25 NTU. Highest mean turbidities were at NC11-DP, plus NAV (11-12 NTU) with turbidities generally low in the middle to lower estuary (Figure 2.3). The estuarine 12 stations did not exceed the estuarine turbidity standard on our 2013 sampling trips. Annual mean turbidity levels for 2013 were well below the long-term average at all estuary sites (Fig. 2.3). Turbidity was considerably lower in the blackwater tributaries (Northeast Cape Fear River and Black River) than in the mainstem river. Average turbidity levels were low in the freshwater streams, with the exception of one excursion to 90 NTU in December at LRC. The State standard for freshwater turbidity is 50 NTU. Note: In addition to the laboratory-analyzed turbidity that are required my NCDWQ for seven locations, the LCFRP uses nephelometers designed for field use, which allows us to acquire in situ turbidity from a natural situation. North Carolina regulatory agencies are required to use turbidity values from water samples removed from the natural system, put on ice until arrival at a State-certified laboratory, and analyzed using laboratory nephelometers. Standard Methods notes that transport of samples and temperature change alters true turbidity readings. Our analysis of samples using both methods shows that lab turbidity is nearly always lower than field turbidity; thus we do not discuss lab turbidity in this report. Total Suspended Solids A new monitoring plan was developed for the LCFRP in September 2011. These changes were suggested by the NC Division of Water Resources (then DWQ). NCDWR suggested the LCFRP stop monitoring TSS at Stations ANC, GS, 6RC, LCO, SR, BRN, HAM, COL, SR-WC and monitor turbidity instead. DWQ believed turbidity would be more useful than TSS in evaluating water quality at these stations because there are water quality standards for turbidity. TSS is used by the DWQ NPDES Unit to evaluate discharges. No LCFRP subscribers discharge in these areas.   Total suspended solid (TSS) values system wide ranged from 1 to 151 mg/L with station annual means from 2 to 19 mg/L (Table 2.7). The overall highest river values were at NAV, M23 and M18. In the stream stations TSS was generally considerably lower than the river and estuary, except for a few incidents at Station LRC and Station ROC. Although total suspended solids (TSS) and turbidity both quantify suspended material in the water column, they do not always go hand in hand. High TSS does not mean high turbidity and vice versa. This anomaly may be explained by the fact that fine clay particles are effective at dispersing light and causing high turbidity readings, while not resulting in high TSS. On the other hand, large organic or inorganic particles may be less effective at dispersing light, yet their greater mass results in high TSS levels. While there is no NC ambient standard for TSS, many years of data from the lower Cape Fear watershed indicates that 25 mg/L can be considered elevated. The fine silt and clay in the upper to middle estuary sediments are most likely derived from the Piedmont and carried downstream to the estuary, while the sediments in the lowest portion of the estuary are marine-derived sands (Benedetti et al. 2006). 13 Light Attenuation The attenuation of solar irradiance through the water column is measured by a logarithmic function (k) per meter. The higher this light attenuation coefficient is the more strongly light is attenuated (through absorbance or reflection) in the water column. River and estuary light attenuation coefficients ranged from 0.89 to 6.40/m and station annual means ranged from 1.65 at M18 to 4.35 /m at NCF6 (Table 2.8). Elevated mean and median light attenuation occurred from DP in the lower river downstream to M54 in the estuary (Table 2.8). In the Cape Fear system, light is attenuated by both turbidity and water color. High light attenuation did not always coincide with high turbidity. Blackwater, though low in turbidity, will attenuate light through absorption of solar irradiance. At NCF6 and BBT, blackwater stations with moderate turbidity levels, light attenuation was high. Compared to other North Carolina estuaries the Cape Fear has high average light attenuation. The high average light attenuation is a major reason why phytoplankton production in the major rivers and the estuary of the LCFR is generally low. Whether caused by turbidity or water color this attenuation tends to limit light availability to the phytoplankton (Mallin et al. 1997; 1999; 2004; Dubbs and Whalen 2008). Chemical Parameters – Nutrients Total Nitrogen Total nitrogen (TN) is calculated from TKN (see below) plus nitrate; it is not analyzed in the laboratory. TN ranged from 50 (detection limit) to 5,150 g/L and station annual means ranged from 237 to 1,978 g/L (Table 2.9). Mean total nitrogen in 2013 was considerably lower than the seventeen-year mean at the river and estuary stations (Figure 2.4). Previous research (Mallin et al. 1999) has shown a positive correlation between river flow and TN in the Cape Fear system. In the main river total nitrogen concentrations were highest between NC11 and DP, entering the system then declined into the lower estuary, most likely reflecting uptake of nitrogen into the food chain through algal productivity and subsequent grazing by planktivores as well as through dilution and marsh denitrification. The highest median TN value at the stream stations was at ROC, with 1,945 g/L; other elevated TN values were seen at ANC, NC403 and 6RC. Nitrate+Nitrite Nitrate+nitrite (henceforth referred to as nitrate) is the main species of inorganic nitrogen in the Lower Cape Fear River. Concentrations system wide ranged from 10 (detection limit) to 4,850 g/L and station annual means ranged from 19 to 1,561 g/L (Table 2.10). The highest average riverine nitrate levels were at NC11 and AC (555 and 557 g/L, respectively) indicating that much of this nutrient is imported from upstream. Moving downstream, nitrate levels decrease most likely as a result of uptake by primary producers, microbial denitrification in riparian marshes and tidal dilution. Despite this, the rapid flushing of the estuary (Ensign et al. 2004) permits sufficient nitrate to enter the coastal ocean in the plume and contribute to offshore productivity (Mallin et al. 2005b). Nitrate can 14 limit phytoplankton production in the lower estuary in summer (Mallin et al. 1999). The blackwater rivers carried lower concentrations of nitrate compared to the mainstem Cape Fear stations; i.e. the Northeast Cape Fear River (NCF117 mean = 240 g/L) and the Black River (B210 = 184 g/L). Lowest river nitrate occurred during early summer and early fall. Several stream stations showed high levels of nitrate on occasion including ROC, 6RC, GCO, NC403, and PB. 6RC, ROC and GCO primarily receive non-point agricultural or animal waste drainage, while point sources contribute to NC403 and PB. Over the past several years a considerable number of experiments have been carried out by UNCW researchers to assess the effects of nutrient additions to water collected from blackwater streams and rivers (i.e. the Black and Northeast Cape Fear Rivers, and Colly and Great Coharie Creeks). These experiments have collectively found that additions of nitrogen (as either nitrate, ammonium, or urea) significantly stimulate phytoplankton production and BOD increases. Critical levels of these nutrients were in the range of 0.2 to 0.5 mg/L as N (Mallin et al. 1998; Mallin et al. 2001a; Mallin et al. 2002a, Mallin et al. 2004). Thus, we conservatively consider nitrate concentrations exceeding 0.5 mg/L as N in Cape Fear watershed streams to be potentially problematic to the stream’s environmental health. Ammonium/ammonia Ammonium concentrations ranged from 5 (detection limit) to 1,070 g/L and station annual means ranged from 10 to 238 g/L (Table 2.11). River areas with the highest mean ammonium levels this monitoring period included AC and DP, which are downstream of a pulp mill discharge, and NAV and HB in the upper estuary. Notable for 2013 were elevated ammonium concentrations at the most saline station M18 (the highest average in the system – Table 2.11). There is a major point source discharger (ADM) just upstream of that site that may have accounted for the high ammonium. At the stream stations, areas with highest levels of ammonium were PB, LVC2, NC403, ANC and HAM (Table 2.11). ANC had the highest peak concentration of 1,070 g/L in July for unknown reasons; LVC2 had the second highest peak of 1,060 µg/L in August. Total Kjeldahl Nitrogen Total Kjeldahl Nitrogen (TKN) is a measure of the total concentration of organic nitrogen plus ammonium. TKN ranged from 50 (detection limit) to 1,400 g/L and station annual means ranged from 104 to 808 g/L (Table 2.12). TKN concentration decreases ocean- ward through the estuary, likely due to ocean dilution and food chain uptake of nitrogen. Several minor peals in the 1,000 µg/L range occurred in stations ANC, NC403 and COL; ANC also had the highest median concentrations. Total Phosphorus Total phosphorus (TP) concentrations ranged from 10 (detection limit) to 1,250 g/L and station annual means ranged from 33 to 398 g/L (Table 2.13). Mean TP for 2013 was higher than the seventeen-year mean in the estuary and river stations (Figure 2.5). In the 15 river TP was highest at the upper riverine channel stations NC11, AC and DP and declined downstream into the estuary. Some of this decline is attributable to the settling of phosphorus-bearing suspended sediments, yet incorporation of phosphorus into bacteria and algae is also responsible. The experiments discussed above in the nitrate subsection also involved additions of phosphorus, either as inorganic orthophosphate or a combination of inorganic plus organic P. The experiments showed that additions of P exceeding 0.5 mg/L led to significant increases in bacterial counts, as well as significant increases in BOD over control. Thus, we consider concentrations of phosphorus above 0.5 mg/L (500 g/L) to be potentially problematic to blackwater streams (Mallin et al. 1998; 2004). Streams periodically exceeding this critical concentration included GCO, LCO, ROC and NC403. Station NC403 is downstream of industrial or wastewater discharges, while GCO, LCO and ROC are in non-point agricultural areas. Orthophosphate Orthophosphate ranged from undetectable to 730 g/L and station annual means ranged from undetectable to 222 g/L (Table 2.14). Much of the orthophosphate load is imported into the Lower Cape Fear system from upstream areas, as NC11 or AC typically have high levels; there are also inputs of orthophosphate from the paper mill above AC (Table 2.14). The Northeast Cape Fear River had higher orthophosphate levels than the Black River. Orthophosphate can bind to suspended materials and is transported downstream via particle attachment; thus high levels of turbidity at the uppermost river stations may be an important factor in the high orthophosphate levels. Turbidity declines toward the lower estuary because of settling, and orthophosphate concentration also declines. In the estuary, primary productivity helps reduce orthophosphate concentrations by assimilation into biomass. Orthophosphate levels typically reach maximum concentrations during summertime, when anoxic sediment releases bound phosphorus. Also, in the Cape Fear Estuary, summer algal productivity is limited by nitrogen, thereby allowing the accumulation of orthophosphate (Mallin et al. 1997; 1999). In spring, productivity in the estuary is usually limited by phosphorus (Mallin et al. 1997; 1999). ROC, ANC and GCO had the highest stream station concentrations. All of those sites are in non-point source areas. Chemical Parameters - EPA Priority Pollutant Metals The LCFRP had previously sampled for water column metals (EPA Priority Pollutant Metals) on a bimonthly basis. However, as of 2007 this requirement was suspended by the NC Division of Water Quality and these data are no longer collected by the LCFRP. 16 Biological Parameters Chlorophyll a During this monitoring period in most locations chlorophyll a was low, except for elevated concentrations in summer and early fall at the lower estuary stations (Table 2.15). The state standard was not exceeded in our samples in 2013. We note that at the upper site NC11 it has been demonstrated that chlorophyll a biomass is significantly correlated with biochemical oxygen demand (BOD5 – Mallin et al. 2006b). System wide, chlorophyll a ranged from undetectable to 28 g/L and station annual means ranged from 2-10 g/L, lower than in 2012. Production of chlorophyll a biomass is usually low to moderate in the rivers and estuary primarily because of light limitation by turbidity in the mainstem (Dubbs and Whalen 2008) and high organic color and low inorganic nutrients in the blackwater rivers. Spatially, besides Station NC11 along the mainstem high values are normally found in the mid-to-lower estuary stations because light becomes more available downstream of the estuarine turbidity maximum (Fig. 2.6). On average, flushing time of the Cape Fear estuary is rapid, ranging from 1-22 days with a median of 6.7 days (Ensign et al. 2004). This does not allow for much settling of suspended materials, leading to light limitation of phytoplankton production. However, under lower-than-average flows there is generally clearer water through less suspended material and less blackwater swamp inputs. For the growing season May-September, long-term (1995-2012) average monthly flow at Lock and Dam #1 was approximately 3,361 CFS (USGS data; (http://nc.water.usgs.gov/realtime/real_time_cape_fear.html), whereas for 2013 discharge in May-September was well above the average at 6,975 CFS. Thus, chlorophyll a concentrations in the river and upper estuary were suppressed by increased flow; however the lowest stations in the estuary, M35-M18 showed chlorophyll a increases (Figure 2.6). As noted in earlier reports, blooms of cyanobacteria (blue-green algae) called Microcystis aeruginosa began occurring in 2009 and continued to occur in summer 2010, 2011 and 2012. This species contains many strains long known to produce toxins, both as a threat to aquatic life and to humans as well (Burkholder 2002). At least some of the blooms in the main stem of the Cape Fear have produced toxins (Isaacs 2013). River discharge appears to be a major factor controlling formation and persistence of these blooms. The blooms in 2009-2012 all occurred when average river discharge for May-September was below 1,900 CFS. The cyanobacterial blooms were suppressed by elevated river flow in 2013. Phytoplankton blooms occasionally occur at the stream stations, with a few occurring at various months in 2013 (Table 2.15). These streams are generally shallow, so vertical mixing does not carry phytoplankton cells down below the critical depth where respiration 17 exceeds photosynthesis. In areas where the forest canopy opens up large blooms can occur. When blooms occur in blackwater streams they can become sources of BOD upon death and decay, reducing further the low summer dissolved oxygen conditions common to these waters (Mallin et al. 2001a; 2002a; 2004; 2006b). Stations PB and ANC had minor algal blooms in 2013, although not exceeding the state standard of 40 µg/L (Table 2.15). Biochemical Oxygen Demand For the mainstem river, median annual five-day biochemical oxygen demand (BOD5) concentrations were approximately equivalent between NC11 and AC, suggesting that in 2013 (as was the case with 2007 through 2012) there was little discernable effect of BOD loading from the nearby pulp/paper mill inputs (Table 2.16). BOD5 values between 1.0 and 2.0 mg/L are typical for the rivers in the Cape Fear system (Mallin et al. 2006b) and in 2013 BOD5 values ranged from 0.6 – 2.5 mg/L. There were no major differences among sites for BOD5 or BOD20 in 2013. BOD20 values showed similar patterns to BOD5 in 2013. Fecal Coliform Bacteria/ Enterococcus bacteria Fecal coliform (FC) bacterial counts ranged from 5 to 11,000 CFU/100 mL and station annual geometric means ranged from 33 to 436 CFU/100 mL (Table 2.17). The state human contact standard (200 CFU/100 mL) was exceeded in the mainstem three times at NAV and once each at AC, DP and IC in 2013. During 2013 the stream stations showed high fecal coliform pollution levels. BRN exceeded 200 CFU/100 mL 100% of the time sampled; HAM, PB and SAR 75%, LRC and ROC 58%, NC403 and ANC 50%, LVC2 42%, and SC-CH 33% and SR-WC 30% of the time sampled. NC403 and PB are located below point source discharges and the other sites are primarily influenced by non-point source pollution. Enterococcus counts were initiated in the estuary in mid-2011, as this test is now the standard used by North Carolina regulators for swimming in salt waters. Sites covered by this test include BRR, M61, M54, M35, M23 and M18. The State has a single-sample level for Tier II swimming areas in which the enterococci level in a Tier II swimming area shall not exceed a single sample of 276 enterococci per 100 milliliter of water (15A NCAC 18A .3402); the LCFRP is using this standard for the Cape Fear estuary samples in our rating system. As such, in 2013 station BRR exceeded the standard on two occasions, and M61 and M35 exceeded the standard on one occasion each. Overall, elevated fecal coliform and enterococcus counts are problematic in this system, with 62% of the stations rated as Fair or Poor in 2013, slightly lower than the previous year 2012. 2.4 - References Cited APHA. 1995. Standard Methods for the Examination of Water and Wastewater, 19th ed. American Public Health Association, Washington, D.C. 18 Benedetti, M.M., M.J. Raber, M.S. Smith and L.A. Leonard. 2006. Mineralogical indicators of alluvial sediment sources in the Cape Fear River basin, North Carolina. Physical Geography 27:258-281. Burkholder. J.M. 2002. Cyanobacteria. In “Encyclopedia of Environmental Microbiology” (G. Bitton, Ed.), pp 952-982. Wiley Publishers, New York. Dubbs, L. L. and S.C. Whalen. 2008. Light-nutrient influences on biomass, photosynthetic potential and composition of suspended algal assemblages in the middle Cape Fear River, USA. International Review of Hydrobiology 93:711-730. Ensign, S.H., J.N. Halls and M.A. Mallin. 2004. Application of digital bathymetry data in an analysis of flushing times of two North Carolina estuaries. Computers and Geosciences 30:501-511. Isaacs, J.D. 2011. Chemical investigations of the metabolites of two strains of toxic cyanobacteria. M.S. Thesis, University of North Carolina Wilmington, Wilmington, N.C. Lin, J. L. Xie, L.J. Pietrafesa, J. Shen, M.A. Mallin and M.J. Durako. 2006. Dissolved oxygen stratification in two microtidal partially-mixed estuaries. Estuarine, Coastal and Shelf Science. 70:423-437. Mallin, M.A. 2000. Impacts of industrial-scale swine and poultry production on rivers and estuaries. American Scientist 88:26-37. Mallin, M.A., L.B. Cahoon, M.R. McIver, D.C. Parsons and G.C. Shank. 1997. Nutrient limitation and eutrophication potential in the Cape Fear and New River Estuaries. Report No. 313. Water Resources Research Institute of the University of North Carolina, Raleigh, N.C. Mallin, M.A., L.B. Cahoon, D.C. Parsons and S.H. Ensign. 1998. Effect of organic and inorganic nutrient loading on photosynthetic and heterotrophic plankton communities in blackwater rivers. Report No. 315. Water Resources Research Institute of the University of North Carolina, Raleigh, N.C. Mallin, M.A., L.B. Cahoon, M.R. McIver, D.C. Parsons and G.C. Shank. 1999. Alternation of factors limiting phytoplankton production in the Cape Fear Estuary. Estuaries 22:985-996. Mallin, M.A., M.H. Posey, M.R. McIver, S.H. Ensign, T.D. Alphin, M.S. Williams, M.L. Moser and J.F. Merritt. 2000. Environmental Assessment of the Lower Cape Fear River System, 1999-2000. CMS Report No. 00-01, Center for Marine Science, University of North Carolina at Wilmington, Wilmington, N.C. Mallin, M.A., L.B. Cahoon, D.C. Parsons and S.H. Ensign. 2001a. Effect of nitrogen and phosphorus loading on plankton in Coastal Plain blackwater streams. Journal of Freshwater Ecology 16:455-466. 19 Mallin, M.A., M.H. Posey, T.E. Lankford, M.R. McIver, S.H. Ensign, T.D. Alphin, M.S. Williams, M.L. Moser and J.F. Merritt. 2001b. Environmental Assessment of the Lower Cape Fear River System, 2000-2001. CMS Report No. 01-01, Center for Marine Science, University of North Carolina at Wilmington, Wilmington, N.C. Mallin, M.A., L.B. Cahoon, M.R. McIver and S.H. Ensign. 2002a. Seeking science-based nutrient standards for coastal blackwater stream systems. Report No. 341. Water Resources Research Institute of the University of North Carolina, Raleigh, N.C. Mallin, M.A., M.H. Posey, T.E. Lankford, M.R. McIver, H.A. CoVan, T.D. Alphin, M.S. Williams and J.F. Merritt. 2002b. Environmental Assessment of the Lower Cape Fear River System, 2001-2002. CMS Report No. 02-02, Center for Marine Science, University of North Carolina at Wilmington, Wilmington, N.C. Mallin, M.A., M.R. McIver, H.A. Wells, M.S. Williams, T.E. Lankford and J.F. Merritt. 2003. Environmental Assessment of the Lower Cape Fear River System, 2002-2003. CMS Report No. 03-03, Center for Marine Science, University of North Carolina at Wilmington, Wilmington, N.C. Mallin, M.A., M.R. McIver, S.H. Ensign and L.B. Cahoon. 2004. Photosynthetic and heterotrophic impacts of nutrient loading to blackwater streams. Ecological Applications 14:823-838. Mallin, M.A., M.R. McIver, T.D. Alphin, M.H. Posey and J.F. Merritt. 2005a. Environmental Assessment of the Lower Cape Fear River System, 2003-2004. CMS Report No. 05-02, Center for Marine Science, University of North Carolina at Wilmington, Wilmington, N.C. Mallin, M.A., L.B. Cahoon and M.J. Durako. 2005b. Contrasting food-web support bases for adjoining river-influenced and non-river influenced continental shelf ecosystems. Estuarine, Coastal and Shelf Science 62:55-62. Mallin, M.A., M.R. McIver and J.F. Merritt. 2006a. Environmental Assessment of the Lower Cape Fear River System, 2005. CMS Report No. 06-02, Center for Marine Science, University of North Carolina at Wilmington, Wilmington, N.C. Mallin, M.A., V.L. Johnson, S.H. Ensign and T.A. MacPherson. 2006b. Factors contributing to hypoxia in rivers, lakes and streams. Limnology and Oceanography 51:690-701. Mallin, M.A., M.R. McIver and J.F. Merritt. 2007. Environmental Assessment of the Lower Cape Fear River System, 2006. CMS Report No. 07-02, Center for Marine Science, University of North Carolina at Wilmington, Wilmington, N.C. Mallin, M.A., M.R. McIver and J.F. Merritt. 2008. Environmental Assessment of the Lower Cape Fear River System, 2007. CMS Report No. 08-03, Center for Marine Science, University of North Carolina at Wilmington, Wilmington, N.C. 20 Mallin, M.A., M.R. McIver and J.F. Merritt. 2009. Environmental Assessment of the Lower Cape Fear River System, 2008. CMS Report No. 09-06, Center for Marine Science, University of North Carolina at Wilmington, Wilmington, N.C. Mallin, M.A., M.R. McIver and J.F. Merritt. 2010. Environmental Assessment of the Lower Cape Fear River System, 2009. CMS Report No. 10-04, Center for Marine Science, University of North Carolina at Wilmington, Wilmington, N.C. Mallin, M.A., M.R. McIver and J.F. Merritt. 2011. Environmental Assessment of the Lower Cape Fear River System, 2010. CMS Report No. 11-02, Center for Marine Science, University of North Carolina at Wilmington, Wilmington, N.C. Mallin, M.A., M.R. McIver and J.F. Merritt. 2012. Environmental Assessment of the Lower Cape Fear River System, 2011. CMS Report No. 12-03, Center for Marine Science, University of North Carolina at Wilmington, Wilmington, N.C. Mallin, M.A., M.R. McIver and J.F. Merritt. 2013. Environmental Assessment of the Lower Cape Fear River System, 2012. CMS Report No. 13-02, Center for Marine Science, University of North Carolina at Wilmington, Wilmington, N.C. U.S. EPA 1997. Methods for the Determination of Chemical Substances in Marine and Estuarine Environmental Matrices, 2nd Ed. EPA/600/R-97/072. National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio. Welschmeyer, N.A. 1994. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and phaeopigments. Limnology and Oceanography 39:1985-1993. 21 Ta b l e 2 . 1 W a t e r t e m p e r a t u r e ( oC) a t t h e L o w e r C a p e F e a r R i v e r P r o g r a m s t a t i o n s d u r i n g 2 0 1 3 . NA V H B B R R M 6 1 M 5 4 M 3 5 M 2 3 M 1 8 NC 1 1 A C D P B B T I C N C F 6 JA N 8. 1 8 . 3 9 . 0 9 . 3 9 . 4 1 0 . 1 1 0 . 5 1 0 . 6 JA N 8. 8 8 . 8 9 . 0 8 . 8 8 . 6 8 . 7 FE B 8. 8 8 . 9 1 0 . 1 1 0 . 3 1 0 . 2 1 0 . 1 1 0 . 4 1 0 . 3 FE B 9. 1 9 . 1 8 . 9 8 . 7 8 . 7 1 0 . 2 MA R 13 . 9 1 3 . 8 1 4 . 0 1 4 . 0 1 3 . 8 1 4 . 1 1 4 . 3 1 4 . 1 MA R 12 . 7 1 2 . 6 1 3 . 1 1 4 . 4 1 4 . 1 1 4 . 1 AP R 15 . 6 1 7 . 5 1 6 . 3 1 6 . 9 1 7 . 0 1 6 . 9 1 6 . 8 1 5 . 6 AP R 19 . 6 2 0 . 0 1 9 . 7 1 9 . 4 1 9 . 7 1 9 . 4 MA Y 20 . 1 2 0 . 2 2 0 . 7 2 0 . 1 1 9 . 8 1 9 . 3 1 8 . 7 1 8 . 7 MA Y 18 . 3 1 8 . 4 1 8 . 5 1 9 . 6 1 8 . 9 2 0 . 4 JU N 24 . 3 2 4 . 4 2 4 . 5 2 5 . 0 2 5 . 1 2 7 . 7 2 7 . 7 2 7 . 2 JU N 25 . 0 2 4 . 4 2 4 . 3 2 4 . 5 2 4 . 4 2 5 . 7 JU L 25 . 2 2 5 . 7 2 5 . 3 2 6 . 3 2 6 . 2 2 6 . 7 2 7 . 1 2 7 . 7 JU L 26 . 0 2 6 . 1 2 6 . 0 2 5 . 5 2 5 . 5 2 6 . 8 AU G 27 . 8 2 7 . 9 2 7 . 8 2 8 . 7 2 8 . 0 2 8 . 2 2 7 . 7 2 7 . 4 AU G 27 . 5 2 8 . 4 2 8 . 5 2 7 . 3 2 8 . 2 2 8 . 3 SE P 26 . 3 2 6 . 5 2 6 . 9 2 7 . 2 2 7 . 4 2 7 . 6 2 7 . 8 2 7 . 8 SE P 27 . 5 2 7 . 8 2 6 . 7 2 8 . 5 2 6 . 5 2 6 . 9 OC T 22 . 9 2 3 . 0 2 2 . 7 2 3 . 2 2 3 . 0 2 3 . 0 2 2 . 5 2 2 . 2 OC T 23 . 4 2 2 . 8 2 2 . 5 2 2 . 5 2 2 . 7 2 3 . 6 NO V 14 . 7 1 4 . 7 1 4 . 0 1 4 . 8 1 4 . 3 1 3 . 5 1 3 . 6 1 3 . 6 NO V 16 . 9 1 7 . 0 1 7 . 3 1 7 . 3 1 7 . 5 1 8 . 2 DE C 12 . 1 1 2 . 5 1 2 . 7 1 2 . 7 1 3 . 0 1 3 . 0 1 3 . 6 1 3 . 7 DE C 10 . 1 1 0 . 7 1 0 . 9 1 1 . 1 1 1 . 3 1 1 . 8 me a n 1 8 . 3 1 8 . 6 1 8 . 7 1 9 . 0 1 8 . 9 1 9 . 2 1 9 . 2 1 9 . 1 me a n 1 8 . 7 1 8 . 8 1 8 . 8 1 9 . 0 1 8 . 8 1 9 . 5 st d d e v 7. 0 7 . 0 6 . 8 6 . 9 6 . 8 7 . 2 7 . 0 7 . 0 st d d e v 7. 2 7 . 2 7 . 0 7 . 0 6 . 9 7 . 0 me d i a n 17 . 9 1 8 . 9 1 8 . 5 1 8 . 5 1 8 . 4 1 8 . 1 1 7 . 8 1 7 . 2 me d i a n 19 . 0 1 9 . 2 1 9 . 1 1 9 . 5 1 9 . 3 1 9 . 9 ma x 27 . 8 2 7 . 9 2 7 . 8 2 8 . 7 2 8 . 0 2 8 . 2 2 7 . 8 2 7 . 8 ma x 27 . 5 2 8 . 4 2 8 . 5 2 8 . 5 2 8 . 2 2 8 . 3 mi n 8. 1 8 . 3 9 . 0 9 . 3 9 . 4 1 0 . 1 1 0 . 4 1 0 . 3 mi n 8. 8 8 . 8 8 . 9 8 . 7 8 . 6 8 . 7 AN C S A R G S N C 4 0 3 P B L R C R O C 6R C L C O G C O S R B R N H A M NC F 1 1 7 B 2 1 0 C O L S R - W C L V C 2 S C - C H JA N 5. 5 4 . 3 3 . 5 5 . 4 5 . 4 8 . 9 6 . 8 JA N 8. 7 8 . 3 7 . 5 7 . 2 8 . 8 8 . 4 JA N 7. 9 6 . 7 5 . 0 4.89.0 FE B 10 . 6 1 0 . 7 1 1 . 0 1 0 . 0 1 0 . 9 1 2 . 9 1 1 . 7 FE B 6. 3 5 . 9 6 . 0 5 . 7 7 . 3 6 . 8 FE B 10 . 8 1 1 . 3 1 1 . 1 11.211.3 MA R 13 . 7 1 3 . 6 1 4 . 1 1 3 . 0 1 4 . 9 1 7 . 8 1 5 . 1 MA R 7. 7 7 . 2 6 . 8 7 . 1 9 . 0 8 . 3 MA R 12 . 0 9 . 0 8 . 1 8 . 5 8 . 8 1 1 . 6 AP R 13 . 3 1 5 . 5 1 4 . 7 1 5 . 1 1 6 . 6 1 9 . 5 1 5 . 4 AP R 14 . 5 1 4 . 6 1 5 . 7 1 4 . 4 1 5 . 6 1 5 . 9 AP R 19 . 2 1 8 . 9 1 5 . 7 1 6 . 8 1 5 . 9 1 9 . 3 MA Y 16 . 4 1 8 . 0 1 7 . 0 1 7 . 8 2 0 . 8 2 1 . 9 1 8 . 6 MA Y 17 . 1 1 6 . 9 1 7 . 0 1 6 . 9 1 6 . 7 1 6 . 8 MA Y 24 . 7 2 0 . 3 1 9 . 4 2 0 . 3 2 2 . 1 2 4 . 1 JU N 22 . 3 2 3 . 1 2 2 . 5 2 3 . 3 2 7 . 7 2 8 . 0 2 2 . 8 JU N 23 . 2 2 3 . 6 2 4 . 0 2 3 . 8 2 3 . 8 2 3 . 7 JU N 25 . 6 23.921.922.923.626.1 JU L 23 . 6 2 5 . 3 2 6 . 7 2 6 . 8 2 8 . 7 2 8 . 9 2 6 . 3 JU L 25 . 0 2 5 . 4 2 6 . 1 2 5 . 8 2 4 . 2 2 4 . 3 JU L 26 . 6 2 5 . 5 2 3 . 9 2 5 . 0 2 4 . 8 2 8 . 0 AU G 23 . 9 2 3 . 2 2 4 . 5 2 3 . 9 2 5 . 5 2 6 . 6 2 4 . 6 AU G 26 . 8 2 6 . 8 2 8 . 0 2 6 . 4 2 6 . 2 2 5 . 7 AU G 27 . 1 2 4 . 5 2 1 . 7 2 4 . 5 2 4 . 9 2 7 . 6 SE P 22 . 3 2 2 . 6 2 3 . 9 2 4 . 8 2 8 . 0 2 6 . 6 2 3 . 3 SE P 21 . 8 2 2 . 0 2 2 . 7 2 2 . 0 2 0 . 9 2 0 . 8 SE P 26 . 3 2 4 . 2 2 1 . 2 2 3 . 3 2 3 . 8 2 7 . 5 OC T 16 . 7 1 6 . 7 1 6 . 0 1 6 . 5 1 6 . 4 1 7 . 3 1 6 . 7 OC T 16 . 0 1 6 . 0 1 6 . 1 1 5 . 1 1 5 . 7 1 5 . 1 OC T 20 . 4 1 9 . 6 1 8 . 6 1 8 . 9 1 9 . 3 2 0 . 6 NO V 8. 4 8 . 5 6 . 3 8 . 4 8 . 3 8 . 2 8 . 8 NO V 13 . 5 1 2 . 9 1 3 . 7 1 3 . 0 1 2 . 8 1 2 . 4 NO V 18 . 1 1 6 . 5 1 3 . 0 1 4 . 4 1 5 . 6 1 8 . 6 DE C 12 . 9 1 1 . 0 1 2 . 6 1 1 . 7 1 1 . 9 1 4 . 5 1 2 . 1 DE C 9. 4 9 . 0 8 . 2 7 . 2 9 . 0 9 . 5 DE C 9. 3 8 . 4 8 . 1 7 . 8 8 . 9 1 0 . 8 me a n 1 5 . 8 1 6 . 0 1 6 . 1 1 6 . 4 1 7 . 9 1 9 . 3 1 6 . 9 me a n 1 5 . 8 1 5 . 7 1 6 . 0 1 5 . 4 1 5 . 8 1 5 . 6 me a n 1 9 . 0 1 7 . 4 1 5 . 6 1 8 . 2 1 7 . 0 1 9 . 5 st d d e v 6. 2 6 . 7 7 . 3 7 . 0 8 . 1 7 . 3 6 . 4 st d d e v 7. 1 7 . 4 7 . 9 7 . 7 6 . 7 6 . 8 st d d e v 7. 3 6 . 9 6 . 4 6 . 3 7 . 2 7 . 3 me d i a n 15 . 1 1 6 . 1 1 5 . 4 1 5 . 8 1 6 . 5 1 8 . 7 1 6 . 1 me d i a n 15 . 3 1 5 . 3 1 5 . 9 1 4 . 8 1 5 . 7 1 5 . 5 me d i a n 19 . 8 1 9 . 3 1 7 . 2 1 9 . 6 1 7 . 6 2 0 . 0 ma x 23 . 9 2 5 . 3 2 6 . 7 2 6 . 8 2 8 . 7 2 8 . 9 2 6 . 3 ma x 26 . 8 2 6 . 8 2 8 . 0 2 6 . 4 2 6 . 2 2 5 . 7 ma x 27 . 1 2 5 . 5 2 3 . 9 2 5 . 0 2 4 . 9 2 8 . 0 mi n 5. 5 4 . 3 3 . 5 5 . 4 5 . 4 8 . 2 6 . 8 mi n 6. 3 5 . 9 6 . 0 5 . 7 7 . 3 6 . 8 mi n 7. 9 6 . 7 5 . 0 7 . 8 4 . 8 9 . 0 22 Ta b l e 2 . 2 S a l i n i t y ( p s u ) a t t h e L o w e r C a p e F e a r R i v e r P r o g r a m e s t u a r i n e s t a t i o n s d u r i n g 2 0 1 3 . NA V H B B R R M 6 1 M 5 4 M 3 5 M 2 3 M 1 8 N C F 6 S C - C H JA N 0. 1 0 . 2 2 . 8 7 . 0 8 . 0 1 3 . 4 2 2 . 1 2 5 . 2 0 . 1 0 . 7 FE B 0. 1 0 . 3 3 . 0 6 . 0 8 . 3 1 4 . 0 2 1 . 4 2 4 . 3 0 . 1 0 . 2 MA R 0. 1 0 . 1 0 . 6 3 . 7 4 . 8 8 . 2 1 5 . 1 1 9 . 0 0 . 1 2 . 4 AP R 0. 1 0 . 4 0 . 3 2 . 0 4 . 3 1 6 . 7 2 5 . 3 3 1 . 4 4 . 2 3 . 8 MA Y 0. 1 0 . 2 1 . 5 5 . 1 1 0 . 0 1 8 . 3 2 8 . 0 2 9 . 4 0 . 3 0 . 1 JU N 0. 1 0 . 1 0 . 1 0 . 1 0 . 3 3 . 6 1 1 . 6 2 4 . 4 0 . 5 0 . 2 JU L 0. 1 0 . 1 0 . 1 0 . 1 0 . 1 0 . 3 5 . 0 7 . 9 0 . 1 0 . 1 AU G 0. 1 1 . 2 1 . 2 4 . 9 6 . 5 1 1 . 0 2 0 . 5 2 5 . 0 1 . 9 0 . 5 SE P 0. 1 1 . 1 1 . 5 6 . 3 7 . 3 1 1 . 1 1 7 . 8 2 4 . 2 0 . 5 3 . 0 OC T 6. 0 1 1 . 1 1 2 . 6 1 7 . 8 1 9 . 1 2 1 . 8 2 7 . 1 2 9 . 1 5 . 6 1 5 . 9 NO V 5. 4 9 . 2 1 2 . 9 1 6 . 9 1 8 . 0 2 3 . 9 2 9 . 7 3 1 . 4 1 3 . 0 1 1 . 6 DE C 8. 3 8 . 6 6 . 9 1 2 . 3 1 7 . 7 2 6 . 2 3 3 . 6 3 4 . 5 0 . 1 0 . 5 me a n 1 . 7 2 . 7 3 . 6 6 . 9 8 . 7 1 4 . 0 2 1 . 4 2 5 . 5 2 . 2 3 . 3 st d d e v 3. 0 4 . 2 4 . 7 5 . 9 6 . 5 7 . 9 8 . 1 7 . 0 3 . 9 5 . 1 me d i a n 0. 1 0 . 4 1 . 5 5 . 6 7 . 7 1 3 . 7 2 1 . 8 2 5 . 1 0 . 4 0 . 6 ma x 8. 3 1 1 . 1 1 2 . 9 1 7 . 8 1 9 . 1 2 6 . 2 3 3 . 6 3 4 . 5 1 3 . 0 1 5 . 9 mi n 0. 1 0 . 1 0 . 1 0 . 1 0 . 1 0 . 3 5 . 0 7 . 9 0 . 1 0 . 1 23 Ta b l e 2 . 3 C o n d u c t i v i t y ( m S / c m ) a t t h e L o w e r C a p e F e a r R i v e r P r o g r a m s t a t i o n s d u r i n g 2 0 1 3 . NA V HB B R R M 6 1 M 5 4 M 3 5 M 2 3 M 1 8 NC 1 1 A C D P B B T I C N C F 6 JA N 0. 2 0 0 . 3 3 5 . 2 0 1 2 . 2 9 1 3 . 8 6 2 2 . 7 8 3 5 . 1 2 3 9 . 6 6 JA N 0.1 5 0 . 1 7 0 . 1 7 0 . 1 6 0 . 1 8 0 . 1 7 FE B 0. 2 0 0 . 6 4 5 . 4 3 1 0 . 5 0 1 4 . 3 0 2 3 . 1 3 3 4 . 1 7 3 8 . 3 2 FE B 0.1 4 0 . 2 3 0 . 2 0 0 . 1 6 0 . 1 9 0 . 2 0 MA R 0. 1 7 0 . 2 0 1 . 2 8 6 . 8 0 8 . 5 7 1 4 . 1 5 2 4 . 7 7 3 0 . 4 9 MA R 0.1 4 0 . 1 4 0 . 2 0 0 . 1 3 0 . 1 7 0 . 1 5 AP R 0. 1 6 0 . 7 6 0 . 5 9 3 . 7 5 7 . 6 7 2 7 . 0 1 3 9 . 5 1 4 8 . 1 1 AP R 0.1 2 0 . 1 3 0 . 1 9 0 . 1 7 0 . 1 9 7 . 5 1 MA Y 0. 2 1 0 . 4 6 2 . 9 2 9 . 0 4 1 6 . 9 9 2 9 . 5 7 4 3 . 5 9 4 5 . 4 4 MA Y 0.1 3 0 . 1 2 0 . 1 3 0 . 1 2 0 . 1 3 0 . 5 2 JU N 0. 1 0 0 . 1 1 0 . 1 1 0 . 1 2 0 . 6 8 6 . 6 1 1 9 . 3 3 3 8 . 4 8 JU N 0.1 4 0 . 1 4 0 . 1 9 0 . 1 6 0 . 1 7 0 . 9 5 JU L 0. 0 7 0 . 0 8 0 . 0 7 0 . 0 8 0 . 0 9 0 . 5 4 9 . 0 5 1 3 . 7 9 JU L 0.0 9 0 . 1 0 0 . 0 9 0 . 0 7 0 . 0 8 0 . 0 8 AU G 0. 1 3 2 . 3 8 2 . 2 6 8 . 8 2 1 1 . 3 1 1 8 . 6 3 3 2 . 8 4 3 9 . 2 1 AU G 0.1 2 0 . 1 1 0 . 1 3 0 . 1 2 0 . 1 3 3 . 6 4 SE P 0. 1 3 2 . 2 0 2 . 8 4 1 1 . 0 8 1 2 . 7 5 1 8 . 7 9 2 8 . 9 2 3 8 . 2 0 SE P 0.1 2 0 . 1 3 0 . 1 5 0 . 1 3 0 . 1 3 1 . 0 1 OC T 10 . 5 9 1 8 . 6 0 2 1 . 0 8 2 8 . 7 9 3 0 . 6 7 3 4 . 6 0 4 2 . 1 3 4 4 . 9 4 OC T 0.1 5 0 . 2 0 0 . 2 1 0 . 2 0 0 . 2 0 9 . 8 4 NO V 9.5 2 1 5 . 6 9 2 1 . 4 0 2 7 . 4 1 2 8 . 7 8 3 7 . 7 2 4 5 . 8 6 4 8 . 1 4 NO V 0.1 5 0 . 2 1 0 . 2 6 0 . 2 6 0 . 5 8 1 9 . 1 7 DE C 14 . 5 1 1 4 . 7 0 1 2 . 0 5 2 0 . 5 7 2 8 . 5 6 4 0 . 9 2 5 1 . 0 9 5 2 . 3 7 DE C 0.1 2 0 . 2 1 0 . 2 2 0 . 1 4 0 . 1 9 0 . 2 0 me a n 3 . 0 0 4 . 6 8 6 . 2 7 1 1 . 6 0 1 4 . 5 2 2 2 . 8 7 3 3 . 8 6 3 9 . 7 6 me a n 0 . 1 3 0 . 1 6 0 . 1 8 0 . 1 5 0 . 1 9 3 . 6 2 st d d e v 5.2 7 7 . 1 2 7 . 7 2 9 . 4 9 1 0 . 2 8 1 2 . 1 3 1 1 . 9 6 1 0 . 1 1 st d d e v 0.0 2 0 . 0 4 0 . 0 5 0 . 0 5 0 . 1 3 5 . 8 7 me d i a n 0.1 8 0 . 7 0 2 . 8 8 9 . 7 7 1 3 . 3 0 2 2 . 9 5 3 4 . 6 4 3 9 . 4 3 me d i a n 0.1 3 0 . 1 4 0 . 1 9 0 . 1 5 0 . 1 7 0 . 7 4 ma x 14 . 5 1 1 8 . 6 0 2 1 . 4 0 2 8 . 7 9 3 0 . 6 7 4 0 . 9 2 5 1 . 0 9 5 2 . 3 7 ma x 0.1 5 0 . 2 3 0 . 2 6 0 . 2 6 0 . 5 8 1 9 . 1 7 mi n 0.0 7 0 . 0 8 0 . 0 7 0 . 0 8 0 . 0 9 0 . 5 4 9 . 0 5 1 3 . 7 9 min 0.0 9 0 . 1 0 0 . 0 9 0 . 0 7 0 . 0 8 0 . 0 8 AN C S A R GS N C 4 0 3 P B L R C R O C 6R C L C O G C O S R BR N H A M NC F 1 1 7 B 2 1 0 C O L S R W C L V C 2 S C - C H JA N 0. 1 3 0 . 1 9 0 . 1 8 0 . 5 4 1 . 3 3 0 . 1 4 0 . 1 6 JA N 0.1 4 0 . 1 0 0 . 1 4 0 . 1 0 0 . 1 3 0 . 1 5 JA N 0. 1 5 0 . 1 0 0 . 0 7 0.121.33 FE B 0. 1 0 0 . 1 3 0 . 1 3 0 . 3 0 0 . 3 1 0 . 0 9 0 . 0 9 FE B 0.1 5 0 . 1 0 0 . 1 4 0 . 0 9 0 . 1 4 0 . 1 5 FE B 0. 1 2 0 . 0 9 0 . 0 7 0.100.34 MA R 0. 0 9 0 . 1 7 0 . 1 6 0 . 6 8 1 . 2 9 0 . 1 2 0 . 1 5 MA R 0.1 4 0 . 1 0 0 . 1 3 0 . 0 9 0 . 1 5 0 . 1 3 MA R 0. 1 4 0 . 1 0 0 . 0 7 0 . 0 8 0 . 1 0 4 . 4 4 AP R 0. 0 9 0 . 1 8 0 . 1 7 0 . 7 1 0 . 7 3 0 . 1 2 0 . 1 6 AP R 0.1 4 0 . 1 0 0 . 1 7 0 . 1 0 0 . 1 4 0 . 1 7 AP R 0. 1 5 0 . 1 0 0 . 0 7 0 . 0 8 0 . 1 1 6 . 9 5 MA Y 0. 1 2 0 . 2 0 0 . 1 8 0 . 7 1 2 . 9 5 0 . 1 4 0 . 1 6 MA Y 0.1 3 0 . 0 9 0 . 1 4 0 . 0 8 0 . 0 9 0 . 1 7 MA Y 5. 2 2 0 . 1 4 0 . 0 7 0 . 0 7 0 . 1 0 0 . 1 7 JU N 0. 1 1 0 . 2 2 0 . 2 0 0 . 9 9 6 . 9 3 0 . 1 2 0 . 1 0 JU N 0.1 4 0 . 1 0 0 . 1 5 0 . 0 8 0 . 1 0 0 . 1 3 JU N 0. 1 1 0 . 0 8 0 . 0 7 0 . 0 6 0 . 0 7 0 . 4 5 JU L 0.1 2 0 . 1 3 0 . 1 3 0 . 2 3 0 . 5 1 0 . 0 9 0 . 1 0 JU L 0.1 4 0 . 1 0 0 . 1 5 0 . 0 8 0 . 1 1 0 . 1 6 JU L 0. 1 8 0 . 0 7 0 . 0 6 0 . 0 7 0 . 0 7 0 . 1 1 AU G 0.0 8 0 . 1 7 0 . 1 7 0 . 3 1 0 . 5 6 0 . 1 1 0 . 1 3 AU G 0.1 5 0 . 0 9 0 . 1 9 0 . 1 0 0 . 1 2 0 . 2 0 AU G 0. 1 3 0 . 0 7 0 . 0 7 0 . 0 7 0 . 1 3 1 . 0 0 SE P 0.0 9 0 . 1 7 0 . 1 6 0 . 6 4 2 . 2 3 0 . 1 5 0 . 2 1 SE P 0.1 5 0 . 1 0 0 . 2 4 0 . 1 0 0 . 1 3 0 . 2 2 SE P 0. 1 6 0 . 0 9 0 . 0 8 0 . 0 7 0 . 1 0 5 . 2 2 OC T 0.0 8 0 . 2 1 0 . 2 0 0 . 4 4 1 . 9 4 0 . 1 2 0 . 3 8 OC T 0.1 6 0 . 1 0 0 . 2 6 0 . 0 9 0 . 1 0 0 . 2 4 OC T 0. 2 1 0 . 1 1 0 . 0 7 0 . 0 8 0 . 1 6 2 6 . 0 0 NO V 0.1 6 0 . 2 1 0 . 2 0 0 . 6 2 1 . 8 9 0 . 1 6 0 . 1 9 NO V 0.1 6 0 . 1 1 0 . 3 0 0 . 1 0 0 . 0 8 0 . 2 5 NO V 0. 2 2 0 . 1 2 0 . 0 6 0 . 0 9 1 . 8 1 1 9 . 4 4 DE C 0.1 6 0 . 2 0 0 . 2 0 0 . 4 8 1 . 0 9 0 . 1 4 0 . 1 7 DE C 0.1 5 0 . 1 1 0 . 1 8 0 . 0 9 0 . 1 3 0 . 2 2 DE C 0. 1 5 0 . 1 0 0 . 0 7 0 . 0 8 0 . 1 0 0 . 9 9 me a n 0 . 1 1 0 . 1 8 0 . 1 7 0 . 5 5 1 . 8 1 0 . 1 2 0 . 1 7 me a n 0 . 1 5 0 . 1 0 0 . 1 8 0 . 0 9 0 . 1 2 0 . 1 8 me a n 0 . 5 8 0 . 1 0 0 . 0 7 0 . 0 8 0 . 2 5 5 . 5 4 st d d e v 0.0 3 0 . 0 3 0 . 0 3 0 . 2 2 1 . 7 9 0 . 0 2 0 . 0 8 st d d e v 0.0 1 0 . 0 1 0 . 0 6 0 . 0 1 0 . 0 2 0 . 0 4 st d d e v 1. 4 6 0 . 0 2 0 . 0 0 0 . 0 1 0 . 4 9 8 . 4 5 me d i a n 0.1 0 0 . 1 8 0 . 1 8 0 . 5 8 1 . 3 1 0 . 1 2 0 . 1 6 me d i a n 0.1 4 0 . 1 0 0 . 1 6 0 . 0 9 0 . 1 2 0 . 1 7 me d i a n 0. 1 5 0 . 1 0 0 . 0 7 0 . 0 8 0 . 1 0 1 . 1 7 ma x 0.1 6 0 . 2 2 0 . 2 0 0 . 9 9 6 . 9 3 0 . 1 6 0 . 3 8 ma x 0.1 6 0 . 1 1 0 . 3 0 0 . 1 0 0 . 1 5 0 . 2 5 ma x 5. 2 2 0 . 1 4 0 . 0 8 0 . 0 9 1 . 8 1 2 6 . 0 0 mi n 0.0 8 0 . 1 3 0 . 1 3 0 . 2 3 0 . 3 1 0 . 0 9 0 . 0 9 min 0.1 3 0 . 0 9 0 . 1 3 0 . 0 8 0 . 0 8 0 . 1 3 mi n 0. 1 1 0 . 0 7 0 . 0 6 0 . 0 6 0 . 0 7 0 . 1 1 24 Ta b l e 2 . 4 p H a t t h e L o w e r C a p e F e a r R i v e r P r o g r a m s t a t i o n s d u r i n g 2 0 1 3 . NA V HB B R R M 6 1 M 5 4 M 3 5 M 2 3 M 1 8 NC 1 1 A C D P B B T I C N C F 6 JA N 6. 8 6 . 7 7 . 2 7 . 4 7 . 4 7 . 8 8 . 0 8 . 1 JA N 7. 0 7 . 1 6 . 8 6 . 8 6 . 8 6 . 5 FE B 7. 1 7 . 3 7 . 3 7 . 4 7 . 6 7 . 9 8 . 1 8 . 2 FE B 7. 1 7 . 3 7 . 3 6 . 9 7 . 1 6 . 8 MA R 7. 1 7 . 3 7 . 2 7 . 3 7 . 4 7 . 8 8 . 2 8 . 2 MA R 6. 8 7 . 0 7 . 2 6 . 6 7 . 0 6 . 6 AP R 7. 1 7 . 1 7 . 1 7 . 3 7 . 4 8 . 2 8 . 2 8 . 2 AP R 6. 7 6 . 8 6 . 9 6 . 7 6 . 8 7 . 0 MA Y 7. 0 7 . 5 7 . 1 7 . 2 7 . 5 8 . 0 8 . 0 8 . 0 MA Y 6. 8 6 . 9 6 . 9 6 . 7 6 . 7 6 . 8 JU N 6. 4 6 . 4 6 . 4 6 . 5 6 . 5 7 . 3 8 . 0 8 . 1 JU N 6. 9 6 . 9 6 . 9 6 . 8 6 . 8 6 . 8 JU L 6. 1 6 . 2 6 . 2 6 . 2 6 . 3 6 . 6 6 . 9 7 . 2 JU L 6. 5 6 . 6 6 . 5 6 . 0 6 . 2 5 . 9 AU G 6. 7 6 . 7 6 . 7 7 . 0 7 . 1 7 . 5 8 . 0 8 . 1 AU G 6. 6 6 . 6 6 . 6 6 . 3 6 . 4 6 . 6 SE P 6. 5 6 . 6 6 . 7 6 . 9 7 . 1 7 . 5 8 . 0 8 . 1 SE P 6. 7 6 . 7 6 . 6 6 . 4 6 . 4 6 . 5 OC T 7. 2 7 . 3 7 . 3 7 . 5 7 . 6 7 . 0 8 . 0 8 . 0 OC T 6. 9 7 . 1 6 . 9 6 . 9 6 . 9 6 . 9 NO V 7. 5 7 . 6 7 . 7 7 . 8 7 . 9 8 . 0 8 . 0 8 . 1 NO V 7. 0 7 . 0 7 . 0 7 . 0 7 . 0 7 . 0 DE C 7. 4 7 . 5 7 . 6 7 . 6 7 . 9 8 . 0 8 . 1 8 . 1 DE C 5. 9 6 . 7 6 . 7 6 . 3 6 . 6 6 . 6 me a n 6 . 9 7 . 0 7 . 0 7 . 2 7 . 3 7 . 6 8 . 0 8 . 0 me a n 6 . 7 6 . 9 6 . 9 6 . 6 6 . 7 6 . 7 st d d e v 0. 4 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 3 0 . 3 st d d e v 0. 3 0 . 2 0 . 2 0 . 3 0 . 3 0 . 3 me d i a n 7. 1 7 . 2 7 . 2 7 . 3 7 . 4 7 . 8 8 . 0 8 . 1 me d i a n 6. 8 6 . 9 6 . 9 6 . 7 6 . 8 6 . 7 ma x 7. 5 7 . 6 7 . 7 7 . 8 7 . 9 8 . 2 8 . 2 8 . 2 ma x 7. 1 7 . 3 7 . 3 7 . 0 7 . 1 7 . 0 mi n 6. 1 6 . 2 6 . 2 6 . 2 6 . 3 6 . 6 6 . 9 7 . 2 mi n 5. 9 6 . 6 6 . 5 6 . 0 6 . 2 5 . 9 AN C S A R GS N C 4 0 3 P B L R C R O C 6R C L C O G C O S R BR N H A M NC F 1 1 7 B 2 1 0 C O L S R W C L V C 2 S C - C H JA N 6. 0 6 . 5 6 . 6 6 . 5 6 . 7 7 . 3 7 . 0 JA N 6. 2 5 . 8 5 . 8 5 . 3 6 . 6 6 . 6 JA N 6.7 6 . 2 3 . 8 6.76.9 FE B 5. 9 6 . 6 6 . 7 6 . 4 6 . 8 6 . 8 6 . 5 FE B 6. 8 6 . 4 6 . 5 6 . 1 6 . 8 6 . 9 FE B 6.7 5 . 9 4 . 0 6.96.9 MA R 5. 3 6 . 7 6 . 7 6 . 4 6 . 8 7 . 6 7 . 1 MA R 6. 5 6 . 2 6 . 4 6 . 1 6 . 9 6 . 9 MA R 6.7 6 . 4 3 . 9 5 . 9 7 . 0 6 . 8 AP R 5. 6 6 . 8 7 . 0 6 . 5 6 . 8 8 . 1 7 . 2 AP R 7. 1 6 . 7 6 . 7 6 . 1 7 . 1 7 . 3 AP R 6.7 6 . 4 3 . 8 6 . 2 6 . 5 7 . 0 MA Y 6. 2 7 . 0 6 . 7 6 . 2 6 . 7 7 . 6 7 . 2 MA Y 6. 6 6 . 1 6 . 0 5 . 8 6 . 4 6 . 5 MA Y 6.8 6 . 7 4 . 0 6 . 4 6 . 3 6 . 6 JU N 6. 3 7 . 0 6 . 6 6 . 4 7 . 1 7 . 7 6 . 8 JU N 6. 7 6 . 6 6 . 6 6 . 2 6 . 5 6 . 8 JU N 6.5 5 . 9 3 . 9 5 . 6 6 . 4 6 . 9 JU L 6. 1 6 . 5 6 . 6 6 . 3 6 . 6 6 . 9 6 . 4 JU L 6. 7 6 . 5 6 . 6 6 . 1 6 . 7 6 . 8 JU L 6. 7 6 . 0 5 . 3 3 . 9 5 . 8 6 . 2 AU G 5. 4 6 . 5 6 . 5 6 . 2 6 . 5 7 . 2 6 . 8 AU G 7. 0 6 . 8 6 . 9 6 . 3 6 . 8 7 . 1 AU G 6. 5 5 . 8 3 . 8 5 . 9 6 . 7 7 . 0 SE P 5. 4 6 . 6 6 . 6 6 . 6 7 . 0 7 . 6 7 . 0 SE P 7. 3 6 . 9 7 . 0 6 . 2 6 . 9 7 . 2 SE P 6. 4 6 . 0 3 . 9 6 . 1 6 . 4 6 . 8 OC T 4. 9 6 . 5 6 . 4 6 . 5 6 . 5 7 . 4 7 . 2 OC T 6. 4 6 . 6 6 . 7 6 . 3 6 . 8 7 . 2 OC T 6. 8 6 . 3 4 . 1 6 . 6 7 . 0 7 . 0 NO V 6. 0 6 . 4 6 . 4 6 . 6 6 . 5 7 . 6 6 . 2 NO V 6. 6 6 . 7 6 . 9 6 . 5 7 . 2 7 . 4 NO V 6. 7 6 . 3 3 . 6 6 . 1 7 . 2 7 . 1 DE C 5. 3 6 . 1 6 . 2 6 . 1 6 . 4 7 . 0 6 . 5 DE C 5. 9 5 . 8 6 . 0 5 . 5 6 . 1 6 . 5 DE C 6. 2 5 . 7 3 . 8 5 . 2 7 . 3 6 . 6 me a n 5 . 7 6 . 6 6 . 6 6 . 4 6 . 7 7 . 4 6 . 8 me a n 6 . 7 6 . 4 6 . 5 6 . 0 6 . 7 6 . 9 me a n 6 . 6 6 . 1 4 . 0 5 . 8 6 . 7 6 . 8 st d d e v 0. 4 0 . 3 0 . 2 0 . 2 0 . 2 0 . 4 0 . 3 st d d e v 0. 4 0 . 4 0 . 4 0 . 3 0 . 3 0 . 3 st d d e v 0. 2 0 . 3 0 . 4 0 . 8 0 . 4 0 . 2 me d i a n 5. 8 6 . 6 6 . 6 6 . 4 6 . 7 7 . 5 6 . 9 me d i a n 6. 7 6 . 6 6 . 6 6 . 1 6 . 8 6 . 9 me d i a n 6. 7 6 . 1 3 . 9 6 . 0 6 . 7 6 . 9 ma x 6. 3 7 . 0 7 . 0 6 . 6 7 . 1 8 . 1 7 . 2 ma x 7. 3 6 . 9 7 . 0 6 . 5 7 . 2 7 . 4 ma x 6. 8 6 . 7 5 . 3 6 . 6 7 . 3 7 . 1 mi n 4. 9 6 . 1 6 . 2 6 . 1 6 . 4 6 . 8 6 . 2 min 5. 9 5 . 8 5 . 8 5 . 3 6 . 1 6 . 5 mi n 6. 2 5 . 7 3 . 6 3 . 9 5 . 8 6 . 2 25 Ta b l e 2 . 5 D i s s o l v e d O x y g e n ( m g / l ) a t t h e L o w e r C a p e F e a r R i v e r P r o g r a m s t a t i o n s d u r i n g 2 0 1 3 . NA V HB B R R M 6 1 M 5 4 M 3 5 M 2 3 M 1 8 NC 1 1 A C D P B B T I C N C F 6 JA N 10 . 1 1 0 . 0 9 . 6 9 . 4 9 . 3 9 . 3 9 . 2 9 . 2 JA N 11 . 2 1 0 . 9 1 0 . 2 1 0 . 1 1 0 . 1 9 . 6 FE B 10 . 7 1 0 . 6 1 0 . 1 9 . 9 9 . 9 9 . 9 1 0 . 1 1 0 . 1 FE B 11 . 3 1 1 . 1 1 1 . 2 1 0 . 5 1 0 . 8 9 . 7 MA R 8. 8 8 . 8 8 . 8 9 . 0 9 . 0 1 0 . 0 1 0 . 8 1 0 . 6 MA R 9. 8 9 . 6 9 . 4 8 . 2 9 . 0 8 . 4 AP R 8. 9 8 . 8 8 . 6 8 . 6 8 . 6 9 . 5 9 . 7 9 . 2 AP R 7. 2 7 . 0 6 . 3 6 . 1 6 . 2 6 . 7 MA Y 6. 6 6 . 0 6 . 6 6 . 8 7 . 5 8 . 0 7 . 6 7 . 8 MA Y 8. 2 8 . 0 7 . 8 6 . 9 6 . 8 6 . 3 JU N 3. 7 3 . 5 3 . 7 3 . 7 4 . 2 6 . 8 7 . 4 6 . 9 JU N 6. 2 5 . 3 4 . 6 4 . 5 4 . 4 5 . 1 JU L 3. 2 3 . 2 3 . 4 3 . 3 3 . 3 4 . 0 4 . 9 5 . 7 JU L 4. 9 4 . 6 4 . 4 2 . 7 3 . 2 2 . 9 AU G 4. 8 4 . 4 4 . 5 4 . 7 4 . 7 6 . 0 6 . 6 7 . 0 AU G 6. 5 6 . 4 5 . 6 4 . 9 5 . 1 4 . 2 SE P 4. 2 4 . 3 4 . 5 4 . 5 5 . 2 6 . 0 7 . 0 7 . 0 SE P 6. 1 5 . 4 4 . 2 4 . 2 4 . 0 4 . 0 OC T 5. 3 5 . 4 5 . 4 5 . 7 6 . 2 6 . 9 6 . 9 7 . 0 OC T 7. 3 7 . 1 5 . 7 5 . 7 5 . 4 5 . 6 NO V 7. 4 7 . 5 7 . 9 7 . 9 8 . 3 8 . 8 8 . 9 8 . 6 NO V 8. 4 7 . 9 6 . 7 7 . 0 6 . 8 7 . 1 DE C 8. 4 8 . 2 8 . 0 8 . 2 8 . 0 8 . 3 8 . 5 8 . 7 DE C 10 . 3 9 . 9 9 . 2 7 . 8 8 . 4 7 . 8 me a n 6 . 8 6 . 7 6 . 8 6 . 8 7 . 0 7 . 8 8 . 1 8 . 2 me a n 8 . 1 7 . 8 7 . 1 6 . 6 6 . 7 6 . 5 st d d e v 2. 6 2 . 6 2 . 4 2 . 3 2 . 2 1 . 9 1 . 7 1 . 5 st d d e v 2. 1 2 . 2 2 . 4 2 . 4 2 . 4 2 . 2 me d i a n 7. 0 6 . 8 7 . 3 7 . 4 7 . 8 8 . 2 8 . 1 8 . 2 me d i a n 7. 8 7 . 5 6 . 5 6 . 5 6 . 5 6 . 5 ma x 10 . 7 1 0 . 6 1 0 . 1 9 . 9 9 . 9 1 0 . 0 1 0 . 8 1 0 . 6 ma x 11 . 3 1 1 . 1 1 1 . 2 1 0 . 5 1 0 . 8 9 . 7 mi n 3. 2 3 . 2 3 . 4 3 . 3 3 . 3 4 . 0 4 . 9 5 . 7 min 4. 9 4 . 6 4 . 2 2 . 7 3 . 2 2 . 9 AN C S A R GS N C 4 0 3 P B L R C R O C 6R C L C O G C O S R BR N H A M NC F 1 1 7 B 2 1 0 C O L S R W C L V C 2 S C - C H JA N 9. 9 1 1 . 0 1 0 . 3 8 . 3 1 0 . 2 1 2 . 5 1 1 . 2 JA N 10 . 6 1 0 . 3 9 . 0 8 . 4 1 0 . 6 1 0 . 2 JA N 9.6 1 1 . 7 1 0 . 4 11.59.6 FE B 8. 4 9 . 0 1 0 . 3 8 . 4 1 0 . 3 1 0 . 3 8 . 4 FE B 12 . 3 1 2 . 4 1 1 . 5 1 1 . 3 1 2 . 0 1 2 . 0 FE B 9.1 9 . 1 7 . 5 11.29.9 MA R 7. 0 7 . 4 6 . 5 5 . 4 9 . 8 1 1 . 0 8 . 7 MA R 10 . 0 1 0 . 2 9 . 2 9 . 9 1 0 . 0 9 . 9 MA R 8.2 1 0 . 3 8 . 8 1 0 . 3 9 . 9 8 . 8 AP R 7. 5 7 . 5 9 . 0 6 . 9 8 . 8 1 1 . 8 9 . 7 AP R 9. 4 9 . 1 7 . 4 5 . 2 9 . 9 1 0 . 5 AP R 5.9 6 . 3 6 . 2 7 . 8 6 . 6 6 . 2 MA Y 5. 7 7 . 3 4 . 8 1 . 7 8 . 3 1 0 . 1 7 . 5 MA Y 8. 5 8 . 5 7 . 1 4 . 6 8 . 9 7 . 4 MA Y 5.0 2 . 9 5 . 7 7 . 1 5 . 4 4 . 4 JU N 1. 3 5 . 7 0 . 7 0 . 4 1 0 . 4 7 . 8 5 . 4 JU N 6. 4 6 . 6 4 . 7 2 . 6 6 . 6 6 . 5 JU N 4.0 4 . 1 3 . 9 6 . 0 3 . 9 4 . 5 JU L 4. 3 4 . 1 2 . 8 2 . 2 4 . 9 7 . 7 4 . 5 JU L 6. 3 6 . 6 4 . 6 2 . 6 7 . 1 6 . 5 JU L 3. 4 3 . 2 4 . 1 3 . 2 3 . 5 2 . 0 AU G 3. 3 5 . 7 2 . 5 2 . 9 6 . 8 7 . 7 6 . 3 AU G 6. 2 6 . 2 5 . 3 5 . 8 6 . 9 5 . 0 AU G 4. 0 4 . 1 4 . 9 5 . 4 3 . 5 4 . 9 SE P 5. 0 5 . 4 3 . 8 4 . 2 8 . 8 9 . 1 6 . 2 SE P 6. 9 7 . 1 6 . 3 1 . 0 8 . 0 6 . 4 SE P 3. 7 4 . 5 5 . 1 6 . 4 4 . 3 4 . 6 OC T 5. 4 7 . 0 3 . 2 4 . 7 6 . 2 9 . 1 7 . 4 OC T 8. 4 8 . 6 8 . 1 3 . 9 8 . 6 7 . 3 OC T 5. 3 4 . 7 5 . 7 7 . 4 3 . 4 6 . 0 NO V 6. 4 9 . 6 7 . 6 7 . 6 8 . 4 1 2 . 2 1 0 . 0 NO V 9. 3 9 . 0 8 . 1 4 . 0 8 . 8 7 . 2 NO V 5. 7 6 . 3 6 . 4 7 . 9 6 . 5 7 . 0 DE C 6. 9 8 . 5 6 . 9 6 . 8 7 . 7 9 . 5 9 . 0 DE C 9. 9 1 0 . 0 9 . 2 7 . 7 1 0 . 4 8 . 4 DE C 9. 0 9 . 3 8 . 1 1 0 . 3 9 . 5 8 . 6 me a n 5 . 9 7 . 4 5 . 7 5 . 0 8 . 4 9 . 9 7 . 9 me a n 8 . 7 8 . 7 7 . 5 5 . 6 9 . 0 8 . 1 me a n 6 . 1 6 . 4 6 . 4 7 . 2 6 . 6 6 . 4 st d d e v 2. 3 2 . 0 3 . 2 2 . 7 1 . 7 1 . 7 2 . 0 st d d e v 1. 9 1 . 9 2 . 1 3 . 1 1 . 7 2 . 1 st d d e v 2. 3 3 . 0 2 . 0 2 . 1 3 . 1 2 . 5 me d i a n 6. 1 7 . 4 5 . 7 5 . 1 8 . 6 9 . 8 8 . 0 me d i a n 8. 9 8 . 8 7 . 8 4 . 9 8 . 9 7 . 4 me d i a n 5. 5 5 . 5 6 . 0 7 . 3 6 . 0 6 . 1 ma x 9. 9 1 1 . 0 1 0 . 3 8 . 4 1 0 . 4 1 2 . 5 1 1 . 2 ma x 12 . 3 1 2 . 4 1 1 . 5 1 1 . 3 1 2 . 0 1 2 . 0 ma x 9. 6 1 1 . 7 1 0 . 4 1 0 . 3 1 1 . 5 9 . 9 mi n 1. 3 4 . 1 0 . 7 0 . 4 4 . 9 7 . 7 4 . 5 min 6. 2 6 . 2 4 . 6 1 . 0 6 . 6 5 . 0 mi n 3. 4 2 . 9 3 . 9 3 . 2 3 . 4 2 . 0 26 Ta b l e 2 . 6 F i e l d T u r b i d i t y ( N T U ) a t t h e L o w e r C a p e F e a r R i v e r P r o g r a m s t a t i o n s d u r i n g 2 0 1 3 . NA V HB B R R M 6 1 M 5 4 M 3 5 M 2 3 M 1 8 NC 1 1 A C D P B B T I C N C F 6 JA N 111 2 1 0 9 6 3 3 4 JA N 65 6 5 7 9 FE B 131 2 9 8 6 4 3 3 FE B 14 1 4 1 6 8 1 3 1 0 MA R 88 8 5 5 2 2 3 MA R 19 1 7 1 8 4 9 1 AP R 22 1 7 1 4 9 1 7 5 7 1 AP R 16 8 1 2 9 7 8 MA Y 76 9 7 7 5 7 8 MA Y 23 2 3 2 0 9 1 3 1 0 JU N 18 1 1 8 9 1 4 9 5 8 JU N 12 1 2 2 7 2 0 1 5 2 0 JU L 18 2 1 1 6 9 2 2 1 3 4 2 JU L 23 2 4 2 1 5 1 2 0 AU G 116 8 3 3 3 3 3 AU G 75 5 4 4 0 SE P 93 4 1 1 3 2 6 SE P 66 5 2 5 1 3 OC T 75 1 4 8 4 3 3 4 OC T 35 5 5 1 0 4 NO V 127 8 6 4 4 2 5 NO V 44 5 5 1 5 5 DE C 71 1 4 2 4 5 4 4 DE C 45 8 1 6 7 me a n 1 2 1 0 96 8 5 4 4 me a n 1 1 1 1 1 2 6 1 0 7 st d d e v 55 4 3 6 3 2 2 st d d e v 77 8 5 4 6 me d i a n 111 0 9 8 6 4 3 4 me d i a n 10 7 1 0 5 1 0 8 ma x 22 2 1 1 6 9 2 2 1 3 7 8 ma x 23 2 4 2 7 2 0 1 5 2 0 mi n 73 4 1 1 2 2 1 mi n 34 5 1 4 0 AN C S A R GS N C 4 0 3 P B L R C R O C 6R C L C O G C O S R BR N H A M NC F 1 1 7 B 2 1 0 C O L S R W C L V C 2 S C - C H JA N 30 0 0 6 2 1 JA N 42 0 0 1 6 JA N 00 0 0 1 9 FE B 102 1 3 7 1 2 1 1 FE B 11 0 0 1 3 FE B 61 0 1 1 0 MA R 41 0 0 4 1 1 MA R 11 0 0 1 4 MA R 10 0 0 2 9 AP R 31 1 0 1 0 1 0 AP R 11 0 0 0 2 AP R 00 0 0 2 1 7 MA Y 72 1 1 7 2 3 MA Y 16 0 0 1 4 MA Y 63 0 0 1 1 JU N 44 7 4 2 4 4 2 6 JU N 42 4 0 1 2 1 1 JU N 3 2 0 2 5 1 3 2 JU L 61 1 2 6 3 4 JU L 10 1 2 0 6 7 JU L 91 0 0 0 1 AU G 74 2 3 2 4 4 1 7 AU G 62 1 0 9 3 3 AU G 10 0 1 5 6 SE P 43 2 0 1 1 1 6 SE P 31 4 9 3 2 SE P 12 0 0 2 2 2 OC T 11 1 0 6 2 1 OC T 10 0 0 1 1 OC T 10 0 0 2 7 NO V 10 0 0 4 1 0 NO V 00 0 0 0 0 NO V 00 0 0 0 1 2 DE C 00 0 0 5 9 0 2 DE C 00 0 0 2 0 DE C 14 3 2 3 1 4 me a n 42 1 1 1 0 1 0 6 me a n 21 3 2 3 4 me a n 2 10 3 2 1 3 st d d e v 31 2 2 7 2 5 8 st d d e v 22 4 4 3 3 st d d e v 31 1 8 1 9 me d i a n 41 1 0 7 2 3 me d i a n 11 0 0 1 3 me d i a n 11 0 0 2 1 1 ma x 10 4 7 4 2 4 9 0 2 6 ma x 6 6 1 2 9 1 2 1 1 ma x 9 4 3 2 5 5 3 2 mi n 00 0 0 4 1 0 min 00 0 0 0 0 mi n 00 0 0 0 1 27 Ta b l e 2 . 7 T o t a l S u s p e n d e d S o l i d s ( m g / L ) a t t h e L o w e r C a p e F e a r R i v e r P r o g r a m s t a t i o n s d u r i n g 2 0 1 3 . NA V HB B R R M 6 1 M 5 4 M 3 5 M 2 3 M 1 8 NC 1 1 A C D P I C N C F 6 JA N 14 . 5 2 0 . 3 1 3 . 3 1 1 . 5 1 3 . 8 1 1 . 3 1 4 . 7 1 5 . 2 JA N 4. 4 3 . 7 5 . 7 7 . 8 1 0 . 0 FE B 11 . 3 9 . 2 1 0 . 1 1 1 . 9 1 1 . 0 1 1 . 1 1 6 . 7 1 7 . 3 FE B 7. 7 8 . 7 1 3 . 8 1 0 . 3 1 2 . 9 MA R 6. 4 7 . 1 7 . 4 8 . 0 8 . 9 8 . 9 1 4 . 4 1 6 . 9 MA R 13 . 5 1 3 . 5 1 8 . 9 6 . 6 3 . 3 AP R 27 . 4 1 4 . 9 1 3 . 8 1 2 . 6 3 2 . 5 1 8 . 7 2 3 . 6 2 0 . 5 AP R 14 . 0 6 . 8 1 0 . 3 7 . 1 1 2 . 0 MA Y 9. 2 6 . 9 1 1 . 6 1 2 . 7 1 4 . 9 2 . 4 2 2 . 6 2 5 . 6 MA Y 25 . 6 2 4 . 9 2 0 . 5 1 2 . 7 1 2 . 1 JU N 27 . 8 1 1 . 6 7 . 9 9 . 5 1 4 . 5 1 3 . 4 1 3 . 0 2 6 . 6 JU N 8. 6 6 . 7 2 2 . 6 1 5 . 2 2 8 . 1 JU L 18 . 4 1 8 . 2 1 4 . 3 9 . 9 2 6 . 9 1 2 . 2 1 0 . 5 9 . 1 JU L 29 . 6 2 9 . 5 2 3 . 5 9 . 8 2 . 7 AU G 13 . 8 7 . 7 9 . 7 6 . 2 7 . 1 9 . 7 1 4 . 1 1 8 . 1 AU G 7. 1 3 . 3 3 . 8 3 . 0 2 . 9 SE P 9. 3 6 . 9 5 . 8 6 . 3 6 . 7 9 . 1 1 2 . 6 2 0 . 3 SE P 3. 9 3 . 8 6 . 1 6 . 8 1 4 . 7 OC T 12 . 5 1 1 . 6 1 7 . 2 1 2 . 1 1 3 . 8 1 1 . 6 1 7 . 3 2 0 . 0 OC T 3. 4 4 . 9 6 . 7 1 0 . 3 8 . 8 NO V 20 . 5 1 1 . 5 1 3 . 4 1 6 . 0 1 3 . 0 1 6 . 3 1 9 . 6 1 3 . 4 NO V 3. 8 4 . 7 7 . 3 1 6 . 6 2 0 . 1 DE C 8. 3 1 4 . 6 9 . 0 1 0 . 8 1 2 . 9 1 9 . 0 1 7 . 8 2 2 . 4 DE C 5. 5 8 . 7 1 2 . 2 1 1 . 1 9 . 5 me a n 1 5 . 0 1 1 . 7 1 1 . 1 1 0 . 6 1 4 . 7 1 2 . 0 1 6 . 4 1 8 . 8 me a n 1 1 . 5 1 0 . 7 1 3 . 2 9 . 7 1 1 . 3 st d d e v 7. 2 4 . 5 3 . 4 2 . 8 7 . 6 4 . 6 4 . 0 4 . 9 st d d e v 9. 3 9 . 3 7 . 5 4 . 0 7 . 7 me d i a n 13 . 2 1 1 . 6 1 0 . 9 1 1 . 2 1 3 . 4 1 1 . 5 1 5 . 7 1 9 . 1 me d i a n 7. 9 6 . 8 1 1 . 3 9 . 8 1 0 . 0 ma x 27 . 8 2 0 . 3 1 7 . 2 1 6 . 0 3 2 . 5 1 9 . 0 2 3 . 6 2 6 . 6 ma x 29 . 6 2 9 . 5 2 3 . 5 1 6 . 6 2 8 . 1 mi n 6. 4 6 . 9 5 . 8 6 . 2 6 . 7 2 . 4 1 0 . 5 9 . 1 min 3. 4 3 . 3 3 . 8 3 . 0 2 . 7 AN C S A R GS N C 4 0 3 P B L R C R O C 6R C L C O G C O S R BR N H A M NC F 1 1 7 B 2 1 0 C O L S R - W C L V C 2 S C - C H JA N 1. 4 1. 4 5 . 8 1 . 4 1 . 4 JA N 1. 4 JA N 1.4 1 . 4 1.4 FE B 3. 0 1. 3 3 . 0 7 . 5 5 . 6 FE B 1. 5 FE B 3.4 1 . 4 1.4 MA R 2. 7 1. 4 2 . 9 1 . 4 1 . 4 MA R 1. 4 MA R 1.4 1 . 4 1.414.6 AP R 4. 0 1. 4 5 . 8 1 . 5 1 . 4 AP R 3. 7 AP R 1.4 1 . 4 3.627.7 MA Y 5. 1 1. 4 6 . 8 1 . 8 1 . 4 MA Y 7. 3 MA Y 2.8 1 . 6 3.010.3 JU N 6. 5 12 . 8 1 5 . 3 1 . 4 3 0 . 8 JU N 6. 0 JU N 1.4 1 . 4 1.543.3 JU L 1. 3 3. 7 6 . 3 4 . 3 6 . 0 JU L 9. 5 JU L 3.7 1 . 4 1.417.8 AU G 8. 2 4. 3 4 . 8 1 . 4 2 1 . 9 AU G 4. 3 AU G 4.7 4 . 4 7.312.0 SE P 5. 6 1. 4 1 6 . 8 3 6 . 7 3 . 0 SE P 1. 4 SE P 4.3 3 . 9 2.727.2 OC T 4. 9 1. 4 6 . 4 1 . 4 1 . 4 OC T 1. 4 OC T 1.4 1 . 4 1.418.6 NO V 1. 4 1. 4 3 . 9 1 . 5 1 . 4 NO V 1. 4 NO V 6.0 1 . 4 1.426.7 DE C 1. 4 1. 4 7 . 2 1 5 1 . 0 6 . 2 DE C 1. 5 DE C 1.4 3 . 2 1.422.7 me a n 3. 8 2. 8 7 . 2 1 7 . 6 6 . 8 me a n 3. 4 me a n 2 . 8 2 . 0 2.322.1 st d d e v 2. 3 3. 3 4 . 6 4 3 . 2 9 . 5 st d d e v 2. 8 st d d e v 1.6 1 . 1 1.79.8 me d i a n 3. 5 1. 4 6 . 3 1 . 5 2 . 2 me d i a n 1. 5 me d i a n 2.1 1 . 4 1.420.7 ma x 8. 2 12 . 8 1 6 . 8 1 5 1 . 0 3 0 . 8 ma x 9. 5 ma x 6.0 4 . 4 7.343.3 mi n 1. 3 1. 3 2 . 9 1 . 4 1 . 4 min 1. 4 mi n 1.4 1 . 4 1.410.3 28 Ta b l e 2 . 8 L i ght A t t e n u a t i o n ( k ) a t t h e L o w e r C a p e F e a r R i v e r P r o gra m s t a t i o n s d u r i n g 2 0 1 3 . NA V HB B R R M 6 1 M 5 4 M 3 5 M 2 3 M 1 8 NC 1 1 A C D P B B T I C N C F 6 JA N 3. 5 8 3 . 6 2 3 . 8 6 3 . 3 7 3 . 0 4 2 . 5 5 1 . 8 1 1 . 5 7 JA N 2. 1 7 1 . 9 8 2 . 7 2 2 . 7 8 2 . 8 1 4 . 3 0 FE B 2. 9 4 3 . 0 1 2 . 9 1 2 . 6 7 2 . 4 4 1 . 8 2 1 . 5 4 1 . 4 9 FE B 2. 2 7 2 . 6 8 2 . 8 6 2 . 6 2 2 . 9 1 4 . 1 0 MA R 2. 3 1 2 . 3 1 2 . 4 2 2 . 6 1 2 . 2 9 2 . 1 0 1 . 6 9 1 . 9 6 MA R 2. 6 1 2 . 5 6 2 . 5 5 2 . 5 2 2 . 5 6 3 . 2 1 AP R 3. 1 6 3 . 0 6 2 . 8 2 2 . 6 9 3 . 7 6 1 . 8 5 1 . 5 2 0 . 8 9 AP R MA Y 3. 3 7 3 . 2 1 2 . 9 4 3 . 0 7 2 . 6 7 1 . 9 3 1 . 5 2 1 . 3 2 MA Y 3. 1 8 3 . 0 5 2 . 9 3 2 . 6 9 3 . 1 3 4 . 3 1 JU N 3. 9 1 3 . 9 7 3 . 6 0 3 . 4 4 3 . 5 2 1. 8 6 1 . 6 9 JU N 2. 5 9 2 . 4 4 3 . 9 6 4 . 1 1 3 . 6 8 6 . 4 0 JU L 5. 2 8 5 . 1 2 5 . 0 7 5 . 3 1 7 . 3 5 3 . 8 6 3 . 3 0 3 . 4 4 JU L 3. 8 7 4 . 0 8 3 . 9 8 4 . 0 1 4 . 1 6 4 . 4 2 AU G 3. 3 5 2 . 8 1 2 . 4 9 3 . 3 3 2 . 8 6 2 . 9 6 2 . 1 4 1 . 7 6 AU G 2. 2 6 2 . 1 3 2 . 4 5 3 . 4 8 2 . 8 5 3 . 2 3 SE P 2. 7 1 1. 9 6 1 . 8 9 SE P 2. 7 2 2 . 9 4 3 . 6 0 3 . 4 7 3 . 7 2 5 . 8 3 OC T 2. 4 7 2 . 5 0 3 . 3 0 2 . 1 9 2 . 1 6 1 . 6 2 1 . 6 2 1 . 5 2 OC T 1. 8 0 2 . 1 4 2 . 7 9 2 . 7 0 3 . 0 4 3 . 3 3 NO V 3. 4 9 2 . 9 4 2 . 8 7 2 . 3 8 1 . 9 7 1 . 6 4 1 . 3 0 1 . 1 5 NO V 1. 9 6 2 . 0 2 2 . 6 4 3 . 0 9 4 . 0 5 3 . 4 8 DE C 2. 9 9 3 . 1 7 2 . 5 1 2 . 3 7 2 . 0 8 1 . 4 5 1 . 2 7 1 . 0 6 DE C 2. 5 5 2 . 9 9 2 . 8 7 3 . 0 0 3 . 2 7 5 . 2 5 me a n 3 . 3 5 3 . 2 5 3 . 1 6 3 . 0 4 3 . 0 7 2 . 1 8 1 . 7 9 1 . 6 5 me a n 2 . 5 4 2 . 6 4 3 . 0 3 3 . 1 3 3 . 2 9 4 . 3 5 st d d e v 0. 7 9 0 . 7 7 0 . 7 8 0 . 8 7 1 . 4 6 0 . 7 5 0 . 5 4 0 . 6 5 st d d e v 0. 5 8 0 . 6 2 0 . 5 5 0 . 5 6 0 . 5 3 1 . 0 8 ma x 5. 2 8 5 . 1 2 5 . 0 7 5 . 3 1 7 . 3 5 3 . 8 6 3 . 3 0 3 . 4 4 ma x 3. 8 7 4 . 0 8 3 . 9 8 4 . 1 1 4 . 1 6 6 . 4 0 mi n 2. 3 1 2 . 3 1 2 . 4 2 2 . 1 9 1 . 9 7 1 . 4 5 1 . 2 7 0 . 8 9 mi n 1. 8 0 1 . 9 8 2 . 4 5 2 . 5 2 2 . 5 6 3 . 2 1 29 Ta b l e 2 . 9 T o t a l N i t r o g e n (g/ l ) a t t h e L o w e r C a p e F e a r R i v e r P r o g r a m s t a t i o n s d u r i n g 2 0 1 3 . NA V H B B R R M 6 1 M 5 4 M 3 5 M 2 3 M 1 8 NC 1 1 A C D P I C N C F 6 JA N 1, 0 1 0 1 , 0 4 0 9 4 0 9 3 0 7 5 0 5 4 0 3 6 0 3 2 0 JA N 1, 0 3 0 1 , 0 1 0 1 , 0 8 0 9 2 0 1 , 1 6 0 FE B 1, 0 9 0 1 , 2 6 0 1 , 3 4 0 8 4 0 8 4 0 5 4 0 2 1 0 2 4 0 FE B 47 0 5 3 0 2 0 0 3 7 0 4 0 0 MA R 1, 0 0 0 1 , 0 9 0 1 , 1 3 0 9 3 0 1 , 7 3 0 7 9 0 2 1 0 1 2 0 MA R 1, 2 9 0 1 , 3 8 0 1 , 0 8 0 1 , 1 3 0 6 5 0 AP R 87 0 8 1 0 9 6 0 8 3 0 9 1 0 3 9 0 2 3 0 5 0 AP R 53 0 5 1 0 6 4 0 1 , 1 6 0 8 2 0 MA Y 1, 3 1 0 1 , 2 7 0 1 , 0 2 0 8 0 0 7 8 0 4 0 0 4 5 0 5 0 MA Y 1, 2 5 0 1 , 2 1 0 1 , 4 0 0 1 , 0 7 0 3 3 0 JU N 45 0 5 5 0 7 2 0 6 4 0 8 6 0 4 6 0 5 0 0 4 0 0 JU N 82 0 1 , 2 3 0 1 , 2 4 0 8 6 0 7 8 0 JU L 32 0 3 2 0 3 1 0 3 4 0 3 5 0 4 5 0 3 3 0 3 8 0 JU L 74 0 6 2 0 4 1 0 5 7 0 4 7 0 AU G 83 0 8 6 0 7 8 0 7 5 0 7 2 0 4 9 0 5 5 0 5 3 0 AU G 83 0 8 0 0 8 1 0 1 , 0 0 0 6 3 0 SE P 20 0 1 3 0 5 0 1 7 0 1 1 0 1 0 0 5 0 5 0 SE P 50 5 0 5 0 5 0 1 0 0 OC T 34 0 1 0 0 2 8 0 2 5 0 3 7 0 2 6 0 3 2 0 2 4 0 OC T 1, 3 7 0 1 , 4 2 0 1 , 0 6 0 1 , 1 1 0 4 8 0 NO V 97 0 9 6 0 6 1 0 4 5 0 4 6 0 5 8 0 1 0 0 2 6 0 NO V 50 5 0 5 0 5 0 5 0 DE C 79 0 7 1 0 8 6 0 4 5 0 3 9 0 2 9 0 2 4 0 2 0 0 DE C 95 0 7 7 0 6 8 0 5 1 0 2 4 0 me a n 7 6 5 7 5 8 7 5 0 6 1 5 6 8 9 4 4 1 2 9 6 2 3 7 me a n 7 8 2 7 9 8 7 2 5 7 3 3 5 0 9 st d d e v 35 3 4 0 7 3 7 9 2 7 1 4 1 5 1 7 6 1 5 3 1 5 4 st d d e v 44 2 4 7 0 4 6 6 4 1 1 3 2 0 me d i a n 85 0 8 3 5 8 2 0 6 9 5 7 3 5 4 5 5 2 8 0 2 4 0 me d i a n 82 5 7 8 5 7 4 5 8 9 0 4 7 5 ma x 1, 3 1 0 1 , 2 7 0 1 , 3 4 0 9 3 0 1 , 7 3 0 7 9 0 5 5 0 5 3 0 ma x 1, 3 7 0 1 , 4 2 0 1 , 4 0 0 1 , 1 6 0 1 , 1 6 0 mi n 20 0 1 0 0 5 0 1 7 0 1 1 0 1 0 0 5 0 5 0 mi n 50 5 0 5 0 5 0 5 0 AN C S A R G S N C 4 0 3 P B L R C R O C 6R C L C O G C O S R B R N H A M NC F 1 1 7 B 2 1 0 C O L S R - W C L V C 2 S C - C H JA N 1, 1 5 0 6 1 0 2 0 0 1 , 1 7 0 2 1 0 5 3 0 1 , 5 5 0 JA N 1, 5 3 0 1 , 2 4 0 5 5 0 4 3 0 1 8 0 6 4 0 JA N 78 0 6 4 0 4 3 0 410 FE B 1, 3 4 0 7 3 0 9 4 0 6 6 0 7 5 0 5 6 0 8 0 FE B 1, 4 5 0 4 0 0 2 4 0 3 0 0 2 3 0 3 8 0 FE B 43 0 1 , 4 0 0 4 0 0 200 MA R 1, 0 2 0 7 9 0 4 0 0 7 9 0 4 6 0 5 3 0 2 , 0 3 0 MA R 76 0 4 9 0 5 1 0 3 0 0 4 4 0 5 8 0 MA R 77 0 4 8 0 4 0 0 4 9 0 3 3 0 5 6 0 AP R 90 0 6 5 0 3 0 0 5 6 0 5 8 0 3 4 0 2 , 0 9 0 AP R 94 0 4 4 0 3 6 0 4 7 0 5 3 0 1 , 0 9 0 AP R 77 0 7 5 0 1 , 1 3 0 7 5 0 3 0 0 6 3 0 MA Y 1, 4 0 0 1 , 2 1 0 8 3 0 6 6 0 6 7 0 7 4 0 2 , 5 0 0 MA Y 1, 3 1 0 8 8 0 4 8 0 4 7 0 4 6 0 5 5 0 MA Y 64 0 1 , 0 5 0 1 , 3 0 0 7 7 0 6 9 0 8 5 0 JU N 1, 2 6 0 9 0 0 8 3 0 1 , 1 5 0 9 4 0 6 1 0 1 , 5 7 0 JU N 1, 1 2 0 6 8 0 7 0 0 4 7 0 5 8 0 7 2 0 JU N 84 0 1,060720670430450 JU L 1, 3 0 0 6 7 0 4 6 0 1 , 1 6 0 2 , 2 0 0 5 0 0 1 , 0 9 0 JU L 1,2 9 0 4 6 0 5 1 0 2 3 0 3 8 0 4 9 0 JU L 50 0 3 8 0 6 3 0 1 8 0 2 5 0 1 4 0 AU G 92 0 5 6 0 4 4 0 1 , 2 7 0 1 , 0 4 0 4 9 0 1 , 9 1 0 AU G 1,0 1 0 6 4 0 4 5 0 5 0 5 7 0 1 2 0 AU G 75 0 5 1 0 5 4 0 2 8 0 1 , 3 0 0 2 1 0 SE P 47 0 1 2 0 5 0 9 8 0 1 , 9 9 0 2 3 0 5 , 1 5 0 SE P 88 0 3 9 0 1 , 6 6 0 1 3 0 5 6 0 5 0 SE P 34 0 2 3 0 3 2 0 2 4 0 1 4 0 2 5 0 OC T 70 0 2 0 0 3 0 0 5 0 2 0 0 5 0 7 3 0 OC T 50 5 0 5 0 5 0 5 0 5 0 OC T 50 5 0 3 0 0 5 0 5 0 4 0 0 NO V 55 0 4 6 0 5 0 1 , 7 8 0 2 0 0 5 0 3 , 0 5 0 NO V 50 1 8 0 1 , 3 9 0 5 0 3 2 0 5 0 NO V 50 5 0 5 0 5 0 1 0 0 1 0 0 DE C 1, 6 1 0 4 0 0 5 0 1 , 1 0 0 2 0 0 7 7 0 1 , 9 8 0 DE C 89 0 3 6 0 5 4 0 5 0 2 4 0 5 0 DE C 54 0 4 8 0 5 0 3 6 0 1 6 0 5 4 0 me a n 1 , 0 5 2 6 0 8 4 0 4 9 4 4 7 8 7 4 5 0 1 , 9 7 8 me a n 9 4 0 5 1 8 6 2 0 2 5 0 3 7 8 3 9 8 me a n 5 3 8 5 9 0 5 2 3 3 8 4 3 6 3 4 1 3 st d d e v 35 5 2 9 7 3 1 5 4 3 7 6 7 8 2 3 8 1 , 2 7 2 st d d e v 47 9 3 1 5 4 5 7 1 8 0 1 7 5 3 3 9 st d d e v 27 7 4 1 6 3 8 1 2 7 3 3 4 3 2 4 0 me d i a n 1, 0 8 5 6 3 0 3 5 0 1 , 0 4 0 6 2 5 5 1 5 1 , 9 4 5 me d i a n 97 5 4 5 0 5 1 0 2 6 5 4 1 0 4 3 5 me d i a n 59 0 4 9 5 4 1 5 3 2 0 2 7 5 4 2 5 ma x 1, 6 1 0 1 , 2 1 0 9 4 0 1 , 7 8 0 2 , 2 0 0 7 7 0 5 , 1 5 0 ma x 1, 5 3 0 1 , 2 4 0 1 , 6 6 0 4 7 0 5 8 0 1 , 0 9 0 ma x 84 0 1 , 4 0 0 1 , 3 0 0 7 7 0 1 , 3 0 0 8 5 0 mi n 47 0 1 2 0 5 0 5 0 2 0 0 5 0 8 0 mi n 50 5 0 5 0 5 0 5 0 5 0 mi n 50 5 0 5 0 5 0 5 0 1 0 0 30 Ta b l e 2 . 1 0 N i t r a t e / N i t r i t e (g/ l ) a t t h e L o w e r C a p e F e a r R i v e r s t a t i o n s d u r i n g 2 0 1 3 . NA V H B B R R M 6 1 M 5 4 M 3 5 M 2 3 M 1 8 NC 1 1 A C D P I C N C F 6 JA N 41 0 5 4 0 4 4 0 3 3 0 3 5 0 2 4 0 1 6 0 1 2 0 JA N 63 0 6 1 0 4 8 0 5 2 0 5 6 0 FE B 79 0 6 6 0 5 4 0 4 4 0 4 4 0 3 4 0 2 1 0 1 4 0 FE B 70 1 3 0 1 0 0 7 0 1 0 MA R 70 0 6 9 0 7 3 0 5 3 0 5 3 0 3 9 0 2 1 0 1 2 0 MA R 89 0 8 8 0 7 8 0 6 3 0 2 5 0 AP R 57 0 6 1 0 6 6 0 5 3 0 5 1 0 1 9 0 3 0 1 0 AP R 30 1 1 0 6 4 0 6 6 0 3 2 0 MA Y 71 0 5 7 0 5 2 0 3 0 0 3 8 0 1 0 0 5 0 3 0 MA Y 95 0 8 1 0 8 0 0 6 7 0 3 0 JU N 50 5 0 3 2 0 2 4 0 3 6 0 6 0 1 0 0 1 0 JU N 42 0 6 3 0 5 4 0 3 6 0 2 8 0 JU L 32 0 3 2 0 3 1 0 2 4 0 2 5 0 2 5 0 2 3 0 1 8 0 JU L 44 0 4 2 0 4 1 0 2 7 0 1 7 0 AU G 63 0 5 6 0 5 8 0 4 5 0 4 2 0 2 9 0 1 5 0 3 0 AU G 83 0 8 0 0 8 1 0 8 0 0 3 3 0 SE P 20 0 1 3 0 1 0 7 0 1 1 0 1 0 0 1 0 1 0 SE P 10 1 0 1 0 1 0 1 0 OC T 24 0 1 0 0 2 8 0 1 5 0 3 7 0 2 6 0 1 2 0 4 0 OC T 1, 3 7 0 1 , 4 2 0 1 , 0 6 0 1 , 1 1 0 2 8 0 NO V 87 0 7 6 0 6 1 0 4 5 0 4 6 0 2 8 0 1 0 0 6 0 NO V 70 9 0 4 0 3 0 1 0 DE C 69 0 6 1 0 6 6 0 4 5 0 3 9 0 1 9 0 4 0 1 0 DE C 95 0 7 7 0 6 8 0 5 1 0 2 4 0 me a n 5 1 5 4 6 7 4 7 2 3 4 8 3 8 1 2 2 4 1 1 8 6 3 me a n 5 5 5 5 5 7 5 2 9 4 7 0 2 0 8 st d d e v 26 3 2 4 9 2 0 8 1 5 0 1 1 4 1 0 0 7 6 6 0 st d d e v 45 2 4 2 0 3 3 6 3 3 6 1 6 9 me d i a n 60 0 5 6 5 5 3 0 3 8 5 3 8 5 2 4 5 1 1 0 3 5 me d i a n 53 5 6 2 0 5 9 0 5 1 5 2 4 5 ma x 87 0 7 6 0 7 3 0 5 3 0 5 3 0 3 9 0 2 3 0 1 8 0 ma x 1, 3 7 0 1 , 4 2 0 1 , 0 6 0 1 , 1 1 0 5 6 0 mi n 50 5 0 1 0 7 0 1 1 0 6 0 1 0 1 0 mi n 10 1 0 1 0 1 0 1 0 AN C S A R G S N C 4 0 3 P B L R C R O C 6R C L C O G C O S R B R N H A M NC F 1 1 7 B 2 1 0 C O L S R - W C L V C 2 S C - C H JA N 45 0 4 1 0 1 0 8 7 0 2 1 0 3 3 0 1 , 2 5 0 JA N 1, 1 3 0 7 4 0 2 5 0 1 3 0 1 8 0 5 4 0 JA N 38 0 2 4 0 3 0 110 FE B 14 0 2 3 0 4 0 2 6 0 5 5 0 1 6 0 8 0 FE B 1, 1 5 0 1 0 0 4 0 1 0 3 0 8 0 FE B 30 1 0 1 0 10 MA R 12 0 2 9 0 1 0 4 9 0 6 0 1 3 0 1 , 3 3 0 MA R 36 0 2 9 0 2 1 0 1 0 1 4 0 1 8 0 MA R 27 0 1 8 0 1 0 1 9 0 1 3 0 2 6 0 AP R 10 0 2 5 0 1 0 2 6 0 8 0 4 0 1 , 7 9 0 AP R 74 0 2 4 0 6 0 1 0 2 3 0 2 9 0 AP R 27 0 2 5 0 1 0 1 5 0 1 0 2 3 0 MA Y 30 0 5 1 0 1 0 6 0 7 0 1 4 0 2 , 0 0 0 MA Y 81 0 2 8 0 8 0 1 0 2 6 0 2 5 0 MA Y 14 0 1 5 0 1 0 7 0 1 0 1 5 0 JU N 60 2 0 0 3 0 5 0 4 0 2 1 0 7 7 0 JU N 62 0 2 8 0 1 0 0 7 0 8 0 3 2 0 JU N 24 0 2602017030150 JU L 30 0 2 7 0 1 6 0 7 6 0 1 , 7 0 0 2 0 0 4 9 0 JU L 1, 1 9 0 3 6 0 2 1 0 1 3 0 3 8 0 2 9 0 JU L 20 0 1 8 0 3 0 8 0 5 0 1 4 0 AU G 22 0 2 6 0 4 0 7 7 0 5 4 0 9 0 1 , 3 1 0 AU G 1, 0 1 0 3 4 0 4 5 0 6 0 5 7 0 1 2 0 AU G 45 0 2 1 0 4 0 2 8 0 4 0 0 1 1 0 SE P 17 0 1 2 0 1 0 9 8 0 1 , 6 9 0 2 3 0 4 , 8 5 0 SE P 88 0 3 9 0 1 , 4 6 0 3 0 5 6 0 5 0 SE P 34 0 2 3 0 2 0 2 4 0 1 4 0 2 5 0 OC T 10 1 0 1 0 1 0 1 0 1 0 5 3 0 OC T 30 1 0 4 0 1 0 1 0 1 0 OC T 10 1 0 1 0 1 0 1 0 1 0 NO V 50 3 6 0 1 0 1 , 7 8 0 1 0 6 0 2 , 7 5 0 NO V 92 0 1 8 0 1 , 2 9 0 3 0 3 2 0 1 0 NO V 10 1 0 1 0 1 0 1 0 1 0 DE C 1,0 1 0 4 0 0 1 0 1 , 1 0 0 1 0 3 7 0 1 , 5 8 0 DE C 89 0 3 6 0 5 4 0 6 0 2 4 0 1 0 DE C 54 0 4 8 0 3 0 3 6 0 1 6 0 2 4 0 me a n 2 4 4 2 7 6 2 9 6 1 6 4 1 4 1 6 4 1 , 5 6 1 me a n 8 1 1 2 9 8 3 9 4 4 7 2 5 0 1 7 9 me a n 2 4 0 1 8 4 1 9 1 5 6 8 9 1 5 5 st d d e v 27 2 1 3 5 4 3 5 3 1 6 2 8 1 1 1 1 , 2 6 9 st d d e v 34 1 1 7 9 4 8 6 4 5 1 8 4 1 6 4 st d d e v 17 2 1 3 3 1 1 1 1 6 1 1 4 9 3 me d i a n 15 5 2 6 5 1 0 6 2 5 7 5 1 5 0 1 , 3 2 0 me d i a n 88 5 2 8 5 2 1 0 3 0 2 3 5 1 5 0 me d i a n 25 5 1 9 5 1 5 1 6 0 4 0 1 5 0 ma x 1,0 1 0 5 1 0 1 6 0 1 , 7 8 0 1 , 7 0 0 3 7 0 4 , 8 5 0 ma x 1, 1 9 0 7 4 0 1 , 4 6 0 1 3 0 5 7 0 5 4 0 ma x 54 0 4 8 0 4 0 3 6 0 4 0 0 2 6 0 mi n 10 1 0 1 0 1 0 1 0 1 0 8 0 mi n 30 1 0 4 0 1 0 1 0 1 0 mi n 10 1 0 1 0 1 0 1 0 1 0 31 Ta b l e 2 . 1 1 A m m o n i u m (g/ l ) a t t h e L o w e r C a p e F e a r R i v e r s t a t i o n s d u r i n g 2 0 1 3 . NA V HB B R R M 6 1 M 5 4 M 3 5 M 2 3 M 1 8 NC 1 1 A C D P I C N C F 6 JA N 60 6 0 9 0 1 0 0 1 4 0 1 3 0 2 0 0 2 3 0 JA N 70 8 0 8 0 7 0 3 0 FE B 19 0 1 7 0 1 7 0 1 6 0 1 3 0 1 1 0 1 3 0 1 6 0 FE B 11 0 1 7 0 1 6 0 1 6 0 7 0 MA R 90 8 0 9 0 1 0 0 1 3 0 1 0 0 6 0 3 2 0 MA R 90 9 0 1 7 0 1 1 0 6 0 AP R 15 0 1 5 0 1 8 0 1 3 0 1 5 0 1 2 0 2 1 0 3 7 0 AP R 13 0 1 2 0 1 6 0 1 3 0 1 2 0 MA Y 15 0 1 4 0 1 2 0 1 0 0 8 0 1 8 0 3 3 0 3 8 0 MA Y 12 0 1 2 0 1 2 0 1 1 0 6 0 JU N 11 0 1 1 0 1 1 0 1 1 0 1 1 0 1 2 0 1 2 0 2 1 0 JU N 90 1 3 0 1 6 0 1 5 0 3 0 JU L 11 0 1 2 0 1 0 0 9 0 8 0 1 1 0 1 4 0 1 2 0 JU L 10 0 9 0 1 1 0 1 0 0 1 3 0 AU G 10 0 1 6 0 1 2 0 1 7 0 1 7 0 1 0 0 2 7 0 3 5 0 AU G 80 9 0 9 0 1 1 0 9 0 SE P 70 7 0 6 0 1 0 0 7 0 6 0 1 1 0 2 7 0 SE P 80 8 0 1 0 0 6 0 4 0 OC T 50 4 0 3 0 2 0 3 0 1 0 1 0 4 3 0 OC T 30 5 0 6 0 5 0 1 0 NO V 70 7 0 4 0 3 0 3 0 2 0 1 0 1 0 NO V 60 1 0 0 1 1 0 8 0 8 0 DE C 60 5 0 6 0 7 0 5 0 3 0 1 0 1 0 DE C 50 8 0 8 0 6 0 2 0 me a n 1 0 1 1 0 2 9 8 9 8 9 8 9 1 1 3 3 2 3 8 me a n 8 4 1 0 0 1 1 7 9 9 6 2 st d d e v 44 4 6 4 7 4 4 4 8 5 1 1 0 4 1 4 1 st d d e v 29 3 1 3 7 3 6 3 8 me d i a n 95 9 5 9 5 1 0 0 9 5 1 0 5 1 2 5 2 5 0 me d i a n 85 9 0 1 1 0 1 0 5 6 0 ma x 19 0 1 7 0 1 8 0 1 7 0 1 7 0 1 8 0 3 3 0 4 3 0 ma x 13 0 1 7 0 1 7 0 1 6 0 1 3 0 min 50 4 0 3 0 2 0 3 0 1 0 1 0 1 0 mi n 30 5 0 6 0 5 0 1 0 AN C S A R GS N C 4 0 3 P B L R C R O C 6R C L C O G C O S R BR N H A M NC F 1 1 7 B 2 1 0 C O L S R - W C L V C 2 S C - C H JA N 90 1 1 0 9 0 1 2 0 2 1 0 1 1 0 8 0 JA N 70 2 0 2 0 1 0 1 0 2 0 JA N 10 0 4 0 4 0 130 FE B 31 0 2 0 1 0 2 0 5 0 1 4 0 6 0 FE B 10 0 8 0 4 0 4 0 1 0 0 5 0 FE B 13 0 3 0 4 0 90 MA R 15 0 4 0 6 0 7 0 9 0 5 0 9 0 MA R 60 7 0 1 0 1 0 3 0 3 0 MA R 10 0 6 0 9 0 9 0 9 0 1 2 0 AP R 40 8 0 5 0 5 0 9 0 8 0 6 0 AP R 70 6 0 1 0 0 1 0 0 4 0 6 2 0 AP R 80 7 0 8 0 8 0 1 0 0 1 1 0 MA Y 15 0 6 0 6 0 8 0 1 7 0 1 1 0 8 0 MA Y 13 0 5 0 5 0 4 0 6 0 8 0 MA Y 60 6 0 2 2 0 5 0 1 2 0 1 1 0 JU N 18 0 1 2 0 1 8 0 4 6 0 1 9 0 1 5 0 2 2 0 JU N 10 0 8 0 1 3 0 1 0 0 6 0 1 3 0 JU N 18 0 7 0 8 0 9 0 7 0 1 0 0 JU L 1, 0 7 0 5 0 1 0 0 2 6 0 4 1 0 1 0 0 6 0 JU L 70 7 0 1 9 0 6 0 1 0 0 9 0 JU L 90 5 0 6 0 6 0 8 0 8 0 AU G 19 0 9 0 1 5 0 1 2 0 2 3 0 1 1 0 1 1 0 AU G 70 8 0 8 0 2 1 0 7 0 9 0 AU G 70 8 0 1 2 0 9 0 1 , 0 6 0 1 0 0 SE P 80 5 0 4 0 9 0 1 1 0 1 0 0 6 0 SE P 30 4 0 5 0 1 3 0 4 0 4 0 SE P 60 7 0 7 0 5 0 1 0 0 9 0 OC T 60 5 0 6 0 9 0 1 3 0 6 0 6 0 OC T 10 1 0 1 0 1 0 1 0 1 0 OC T 30 3 0 5 0 3 0 7 0 4 0 NO V 30 3 0 2 0 4 0 7 0 2 0 2 0 NO V 30 3 0 2 0 1 0 1 0 1 0 NO V 50 4 0 2 0 4 0 3 0 0 9 0 DE C 40 3 0 1 0 7 0 8 0 1 1 0 3 0 DE C 40 1 0 2 0 1 0 3 0 1 0 DE C 40 2 0 2 0 2 0 4 0 4 0 me a n 1 9 9 6 1 6 9 1 2 3 1 5 3 9 5 7 8 me a n 6 5 5 0 6 0 6 1 4 7 9 8 me a n 8 3 5 2 7 4 6 0 1 8 8 8 8 st d d e v 28 6 3 2 5 3 1 2 2 1 0 0 3 7 5 1 st d d e v 34 2 7 5 6 6 3 3 2 1 6 9 st d d e v 42 1 9 5 5 2 6 2 8 2 2 8 me d i a n 12 0 5 0 6 0 8 5 1 2 0 1 0 5 6 0 me d i a n 70 5 5 4 5 4 0 4 0 4 5 me d i a n 75 5 5 6 5 5 5 9 5 9 5 ma x 1, 0 7 0 1 2 0 1 8 0 4 6 0 4 1 0 1 5 0 2 2 0 ma x 13 0 8 0 1 9 0 2 1 0 1 0 0 6 2 0 ma x 18 0 8 0 2 2 0 9 0 1 , 0 6 0 1 2 0 min 30 2 0 1 0 2 0 5 0 2 0 2 0 mi n 10 1 0 1 0 1 0 1 0 1 0 mi n 30 2 0 2 0 2 0 4 0 4 0 32 Ta b l e 2 . 1 2 T o t a l K j e l d a h l N i t r o g e n ( g/ l ) a t t h e L o w e r C a p e F e a r R i v e r P r o g r a m s t a t i o n s d u r i n g 2 0 1 3 . NA V HB B R R M 6 1 M 5 4 M 3 5 M 2 3 M 1 8 NC 1 1 A C D P I C N C F 6 JA N 60 0 5 0 0 5 0 0 6 0 0 4 0 0 3 0 0 2 0 0 2 0 0 JA N 40 0 4 0 0 6 0 0 4 0 0 6 0 0 FE B 30 0 6 0 0 8 0 0 4 0 0 4 0 0 2 0 0 5 0 1 0 0 FE B 40 0 4 0 0 1 0 0 3 0 0 4 0 0 MA R 30 0 4 0 0 4 0 0 4 0 0 1 2 0 0 4 0 0 5 0 5 0 MA R 40 0 5 0 0 3 0 0 5 0 0 4 0 0 AP R 30 0 2 0 0 3 0 0 3 0 0 4 0 0 2 0 0 5 0 5 0 AP R 50 0 4 0 0 5 0 5 0 0 5 0 0 MA Y 60 0 7 0 0 5 0 0 5 0 0 4 0 0 3 0 0 4 0 0 5 0 MA Y 30 0 4 0 0 6 0 0 4 0 0 3 0 0 JU N 40 0 5 0 0 4 0 0 4 0 0 5 0 0 4 0 0 4 0 0 5 0 JU N 40 0 6 0 0 7 0 0 5 0 0 5 0 0 JU L 50 5 0 5 0 1 0 0 1 0 0 2 0 0 1 0 0 5 0 JU L 30 0 2 0 0 5 0 3 0 0 3 0 0 AU G 20 0 3 0 0 2 0 0 3 0 0 3 0 0 2 0 0 4 0 0 5 0 AU G 50 5 0 5 0 2 0 0 3 0 0 SE P 50 5 0 5 0 1 0 0 5 0 5 0 5 0 5 0 SE P 50 5 0 5 0 5 0 1 0 0 OC T 10 0 5 0 5 0 1 0 0 5 0 5 0 2 0 0 2 0 0 OC T 50 5 0 5 0 5 0 2 0 0 NO V 10 0 2 0 0 5 0 5 0 5 0 3 0 0 5 0 2 0 0 NO V 50 5 0 5 0 5 0 5 0 DE C 10 0 1 0 0 2 0 0 5 0 5 0 1 0 0 2 0 0 2 0 0 DE C 50 5 0 5 0 5 0 5 0 me a n 2 5 8 3 0 4 2 9 2 2 7 5 3 2 5 2 2 5 1 7 9 1 0 4 me a n 2 4 6 2 6 3 2 2 1 2 7 5 3 0 8 st d d e v 19 6 2 3 1 2 3 7 1 9 0 3 2 6 1 2 0 1 4 7 7 2 st d d e v 18 0 2 0 8 2 6 0 1 8 9 1 8 2 me d i a n 25 0 2 5 0 2 5 0 3 0 0 3 5 0 2 0 0 1 5 0 5 0 me d i a n 30 0 3 0 0 5 0 3 0 0 3 0 0 ma x 60 0 7 0 0 8 0 0 6 0 0 1 , 2 0 0 4 0 0 4 0 0 2 0 0 ma x 50 0 6 0 0 7 0 0 5 0 0 6 0 0 mi n 50 5 0 5 0 5 0 5 0 5 0 5 0 5 0 mi n 50 5 0 5 0 5 0 5 0 AN C S A R GS N C 4 0 3 P B L R C R O C 6R C L C O G C O S R BR N H A M NC F 1 1 7 B 2 1 0 C O L S R - W C L V C 2 S C - C H JA N 70 0 2 0 0 2 0 0 3 0 0 5 0 2 0 0 3 0 0 JA N 40 0 5 0 0 3 0 0 3 0 0 5 0 1 0 0 JA N 40 0 4 0 0 4 0 0 300 FE B 12 0 0 5 0 0 9 0 0 4 0 0 2 0 0 4 0 0 5 0 FE B 30 0 3 0 0 2 0 0 3 0 0 2 0 0 3 0 0 FE B 40 0 1 4 0 0 4 0 0 200 MA R 90 0 5 0 0 4 0 0 3 0 0 4 0 0 4 0 0 7 0 0 MA R 40 0 2 0 0 3 0 0 3 0 0 3 0 0 4 0 0 MA R 50 0 3 0 0 4 0 0 3 0 0 2 0 0 3 0 0 AP R 80 0 4 0 0 3 0 0 3 0 0 5 0 0 3 0 0 3 0 0 AP R 20 0 2 0 0 3 0 0 4 0 0 3 0 0 8 0 0 AP R 50 0 5 0 0 1 1 0 0 6 0 0 3 0 0 4 0 0 MA Y 11 0 0 7 0 0 7 0 0 6 0 0 6 0 0 6 0 0 5 0 0 MA Y 50 0 6 0 0 4 0 0 4 0 0 2 0 0 3 0 0 MA Y 50 0 9 0 0 1 3 0 0 7 0 0 6 0 0 7 0 0 JU N 12 0 0 7 0 0 8 0 0 1 1 0 0 9 0 0 4 0 0 8 0 0 JU N 50 0 4 0 0 6 0 0 4 0 0 5 0 0 4 0 0 JU N 60 0 8 0 0 7 0 0 5 0 0 4 0 0 3 0 0 JU L 10 0 0 4 0 0 3 0 0 4 0 0 5 0 0 3 0 0 6 0 0 JU L 10 0 1 0 0 3 0 0 1 0 0 5 0 2 0 0 JU L 30 0 2 0 0 6 0 0 1 0 0 2 0 0 5 0 AU G 70 0 3 0 0 4 0 0 5 0 0 5 0 0 4 0 0 6 0 0 AU G 50 3 0 0 5 0 5 0 5 0 5 0 AU G 30 0 3 0 0 5 0 0 5 0 9 0 0 1 0 0 SE P 30 0 5 0 5 0 5 0 3 0 0 5 0 3 0 0 SE P 50 5 0 2 0 0 1 0 0 5 0 5 0 SE P 50 5 0 3 0 0 5 0 5 0 5 0 OC T 70 0 2 0 0 3 0 0 5 0 2 0 0 5 0 2 0 0 OC T 50 5 0 5 0 5 0 5 0 5 0 OC T 50 5 0 3 0 0 5 0 5 0 4 0 0 NO V 50 0 1 0 0 5 0 5 0 2 0 0 5 0 3 0 0 NO V 50 5 0 1 0 0 5 0 5 0 5 0 NO V 50 5 0 5 0 5 0 1 0 0 1 0 0 DE C 60 0 5 0 5 0 5 0 2 0 0 4 0 0 4 0 0 DE C 50 5 0 5 0 5 0 5 0 5 0 DE C 50 5 0 5 0 5 0 5 0 3 0 0 me a n 8 0 8 3 4 2 3 7 1 3 4 2 3 7 9 2 9 6 4 2 1 me a n 2 2 1 2 3 3 2 3 8 2 0 8 1 5 4 2 2 9 me a n 3 0 8 4 1 7 5 0 8 2 4 5 2 7 9 2 7 0 st d d e v 28 1 2 3 0 2 9 0 3 0 4 2 3 5 1 7 5 2 2 1 st d d e v 18 8 1 9 0 1 6 5 1 5 3 1 4 8 2 2 8 st d d e v 20 9 4 2 3 3 7 7 2 6 1 2 5 4 2 0 4 me d i a n 75 0 3 5 0 3 0 0 3 0 0 3 5 0 3 5 0 3 5 0 me d i a n 15 0 2 0 0 2 5 0 2 0 0 5 0 1 5 0 me d i a n 35 0 3 0 0 4 0 0 7 5 2 0 0 3 0 0 ma x 1, 2 0 0 7 0 0 9 0 0 1 , 1 0 0 9 0 0 6 0 0 8 0 0 ma x 50 0 6 0 0 6 0 0 4 0 0 5 0 0 8 0 0 ma x 60 0 1 , 4 0 0 1 , 3 0 0 7 0 0 9 0 0 7 0 0 mi n 30 0 5 0 5 0 5 0 5 0 5 0 5 0 mi n 50 5 0 5 0 5 0 5 0 5 0 mi n 50 5 0 5 0 5 0 5 0 5 0 33 Ta b l e 2 . 1 3 T o t a l P h o s p h o r u s (g/ l ) a t t h e L o w e r C a p e F e a r R i v e r P r o g r a m s t a t i o n s d u r i n g 2 0 1 3 . NA V HB B R R M 6 1 M 5 4 M 3 5 M 2 3 M 1 8 NC 1 1 A C D P I C N C F 6 JA N 27 0 3 9 0 2 0 0 1 8 0 1 6 0 1 3 0 1 0 0 1 1 0 JA N 31 0 2 7 0 2 9 0 1 8 0 1 8 0 FE B 16 0 1 6 0 9 0 1 1 0 8 0 6 0 6 0 5 0 FE B 16 0 1 7 0 3 4 0 1 4 0 7 0 MA R 10 0 1 1 0 1 0 0 8 0 1 0 0 8 0 7 0 4 0 MA R 14 0 1 3 0 1 5 0 1 1 0 4 0 AP R 16 0 1 6 0 1 5 0 1 2 0 1 5 0 8 0 3 0 3 0 AP R 17 0 2 1 0 1 7 0 1 5 0 1 2 0 MA Y 15 0 1 6 0 1 4 0 4 4 0 1 0 0 6 0 6 0 8 0 MA Y 19 0 1 9 0 1 7 0 1 5 0 1 4 0 JU N 16 0 1 3 0 1 2 0 1 4 0 1 5 0 1 4 0 1 0 0 7 0 JU N 30 0 3 2 0 3 0 0 2 0 0 1 7 0 JU L 29 0 1 6 0 1 5 0 4 3 0 1 8 0 1 6 0 3 4 0 7 0 JU L 17 0 1 6 0 1 8 0 1 8 0 1 8 0 AU G 19 0 1 4 0 1 9 0 1 1 0 1 1 0 8 0 6 0 5 0 AU G 20 0 1 7 0 1 9 0 1 9 0 1 4 0 SE P 14 0 1 1 0 1 1 0 8 0 8 0 6 0 4 0 3 0 SE P 16 0 1 4 0 1 3 0 1 2 0 1 5 0 OC T 14 0 1 1 0 1 4 0 8 0 9 0 6 0 5 0 5 0 OC T 17 0 1 8 0 1 8 0 2 0 0 1 2 0 NO V 25 0 1 2 0 9 0 1 1 0 8 0 6 0 3 0 8 0 NO V 23 0 2 8 0 2 1 0 2 0 0 1 0 0 DE C 12 0 1 1 0 1 3 0 1 1 0 6 0 6 0 6 0 3 0 DE C 21 0 1 7 0 1 5 0 1 2 0 9 0 me a n 1 7 8 1 5 5 1 3 4 1 6 6 1 1 2 8 6 8 3 5 8 me a n 2 0 1 1 9 9 2 0 5 1 6 2 1 6 2 st d d e v 58 7 4 3 4 1 2 3 3 7 3 5 8 0 2 4 st d d e v 52 5 7 6 5 3 3 4 3 me d i a n 16 0 1 3 5 1 3 5 1 1 0 1 0 0 7 0 6 0 5 0 me d i a n 18 0 1 7 5 1 8 0 1 6 5 1 3 0 ma x 29 0 3 9 0 2 0 0 4 4 0 1 8 0 1 6 0 3 4 0 1 1 0 ma x 31 0 3 2 0 3 4 0 2 0 0 2 0 0 mi n 10 0 1 1 0 9 0 8 0 6 0 6 0 3 0 3 0 mi n 14 0 1 3 0 1 3 0 1 1 0 1 1 0 AN C S A R GS N C 4 0 3 P B L R C R O C 6R C L C O G C O S R BR N H A M NC F 1 1 7 B 2 1 0 C O L S R - W C L V C 2 S C - C H JA N 12 0 7 0 8 0 8 0 1 8 0 6 0 1 3 0 JA N 13 0 1 0 0 3 2 0 7 0 1 1 0 1 4 0 JA N 80 1 2 0 5 0 40 FE B 19 0 6 0 6 0 8 0 8 0 9 0 1 1 0 FE B 60 4 0 1 7 0 2 0 6 0 7 0 FE B 11 0 4 0 3 0 60 MA R 12 0 6 0 6 0 8 0 8 0 4 0 1 7 0 MA R 50 3 0 8 0 1 0 5 0 6 0 MA R 40 4 0 4 0 1 0 1 0 6 0 AP R 11 0 8 0 7 0 8 0 2 0 0 4 0 1 7 0 AP R 50 4 0 2 2 0 1 0 6 0 7 0 AP R 90 1 1 0 1 0 1 0 1 0 1 2 0 MA Y 17 0 2 0 0 1 2 0 3 4 0 1 5 0 8 0 3 3 0 MA Y 17 0 1 4 0 2 5 0 7 0 8 0 1 8 0 MA Y 10 0 3 6 0 5 0 5 0 3 0 1 1 0 JU N 31 0 3 9 0 8 2 0 5 9 0 2 0 0 8 0 4 1 0 JU N 14 0 7 0 7 2 0 9 0 1 5 0 1 5 0 JU N 22 0 1 2 0 5 0 1 2 0 4 0 2 2 0 JU L 37 0 2 0 0 2 2 0 3 8 0 2 3 0 1 3 0 2 8 0 JU L 15 0 1 , 2 5 0 6 2 0 1 2 0 2 0 0 1 8 0 JU L 21 0 1 2 0 3 0 6 0 4 0 1 2 0 AU G 36 0 4 0 0 2 2 0 2 9 0 2 9 0 8 0 5 1 0 AU G 18 0 1 1 0 6 0 0 1 8 0 1 6 0 2 0 0 AU G 24 0 1 3 0 4 0 7 0 6 0 1 0 0 SE P 23 0 2 1 0 1 7 0 2 8 0 4 8 0 1 6 0 6 0 0 SE P 13 0 7 0 5 5 0 5 0 1 0 0 1 6 0 SE P 14 0 1 3 0 9 0 7 0 4 0 1 1 0 OC T 20 0 1 7 0 1 5 0 1 8 0 3 3 0 7 0 6 4 0 OC T 12 0 5 0 6 2 0 9 0 8 0 1 6 0 OC T 10 0 1 1 0 5 0 4 0 3 0 8 0 NO V 22 0 1 0 0 5 0 9 0 2 6 0 4 0 2 5 0 NO V 70 2 0 3 7 0 5 0 7 0 1 3 0 NO V 80 2 8 0 4 0 2 3 0 3 0 1 0 0 DE C 31 0 7 0 7 0 1 5 0 4 3 0 3 0 0 3 9 0 DE C 70 3 0 2 5 0 2 0 1 1 0 1 3 0 DE C 70 1 1 0 7 0 3 0 1 0 1 4 0 me a n 2 2 6 1 6 8 1 7 4 2 1 8 2 4 3 9 8 3 3 3 me a n 1 1 0 1 6 3 3 9 8 6 5 1 0 3 1 3 6 me a n 1 2 3 1 3 9 4 6 6 9 3 3 1 1 6 st d d e v 88 1 1 6 2 0 3 1 5 5 1 1 9 7 0 1 7 3 st d d e v 45 3 3 0 2 0 4 4 8 4 4 4 5 st d d e v 62 8 8 1 9 6 2 1 6 4 1 me d i a n 21 0 1 3 5 1 0 0 1 6 5 2 1 5 8 0 3 0 5 me d i a n 12 5 6 0 3 4 5 6 0 9 0 1 4 5 me d i a n 10 0 1 2 0 4 5 5 5 3 5 1 1 0 ma x 37 0 4 0 0 8 2 0 5 9 0 4 8 0 3 0 0 6 4 0 ma x 18 0 1 , 2 5 0 7 2 0 1 8 0 2 0 0 2 0 0 ma x 24 0 3 6 0 9 0 2 3 0 6 0 2 2 0 mi n 11 0 6 0 5 0 8 0 8 0 4 0 1 1 0 mi n 50 2 0 8 0 1 0 5 0 6 0 mi n 40 4 0 1 0 1 0 1 0 6 0 34 Ta b l e 2 . 1 4 O r t h o p h o s p h a t e (g/ l ) a t t h e L o w e r C a p e F e a r R i v e r P r o g r a m s t a t i o n s d u r i n g 2 0 1 3 . NA V HB B R R M 6 1 M 5 4 M 3 5 M 2 3 M 1 8 NC 1 1 A C D P B B T I C N C F 6 JA N 60 6 0 4 0 4 0 4 0 3 0 2 0 2 0 JA N 90 7 0 6 0 7 0 5 0 2 0 FE B 60 5 0 3 0 5 0 4 0 3 0 1 0 1 0 FE B 90 9 0 6 0 4 0 6 0 2 0 MA R 50 5 0 5 0 3 0 3 0 2 0 1 0 1 0 MA R 60 6 0 5 0 2 0 4 0 1 0 AP R 50 5 0 5 0 5 0 5 0 1 0 1 0 0 AP R 70 8 0 7 0 6 0 7 0 3 0 MA Y 60 6 0 5 0 4 0 3 0 1 0 1 0 1 0 MA Y 60 5 0 6 0 5 0 5 0 3 0 JU N 50 5 0 5 0 6 0 7 0 6 0 3 0 1 0 JU N 80 7 0 8 0 6 0 6 0 5 0 JU L 40 4 0 4 0 5 0 5 0 5 0 3 0 3 0 JU L 40 4 0 4 0 4 0 4 0 8 0 AU G 50 6 0 6 0 5 0 6 0 3 0 1 0 1 0 AU G 70 7 0 8 0 7 0 7 0 6 0 SE P 40 4 0 4 0 4 0 4 0 0 2 0 1 0 SE P 60 5 0 4 0 4 0 4 0 6 0 OC T 13 0 7 0 6 0 7 0 8 0 5 0 3 0 2 0 OC T 17 0 1 8 0 1 8 0 2 0 2 0 0 6 0 NO V 70 4 0 5 0 4 0 4 0 3 0 2 0 8 0 NO V 15 0 1 8 0 1 4 0 1 1 0 8 0 3 0 DE C 40 5 0 6 0 5 0 4 0 2 0 0 1 0 DE C 90 8 0 6 0 2 0 5 0 3 0 me a n 5 8 5 2 4 8 4 8 4 8 2 8 1 7 1 8 me a n 8 6 8 5 7 7 5 0 6 8 4 0 st d d e v 24 9 9 1 1 1 5 1 8 1 0 2 1 st d d e v 38 4 7 4 2 2 6 4 4 2 1 me d i a n 50 5 0 5 0 5 0 4 0 3 0 1 5 1 0 me d i a n 75 7 0 6 0 4 5 5 5 3 0 ma x 13 0 7 0 6 0 7 0 8 0 6 0 3 0 8 0 ma x 17 0 1 8 0 1 8 0 1 1 0 2 0 0 8 0 mi n 40 4 0 3 0 3 0 3 0 0 0 0 mi n 40 4 0 4 0 2 0 4 0 1 0 AN C S A R GS N C 4 0 3 P B L R C R O C 6R C L C O G C O S R BR N H A M NC F 1 1 7 B 2 1 0 C O L S R - W C L V C 2 S C - C H JA N 50 1 0 1 0 3 0 4 0 1 0 9 0 JA N 20 1 0 9 0 1 0 2 0 1 0 JA N 30 3 0 3 0 20 FE B 13 0 1 0 1 0 3 0 2 0 2 0 5 0 FE B 20 1 0 9 0 0 1 0 1 0 FE B 40 2 0 2 0 0 MA R 60 1 0 1 0 3 0 3 0 1 0 9 0 MA R 10 1 0 5 0 0 1 0 1 0 MA R 20 2 0 4 0 020 AP R 50 1 0 2 0 3 0 4 0 1 0 9 0 AP R 10 1 0 1 4 0 1 0 2 0 2 0 AP R 40 4 0 1 0 1 0 0 3 0 MA Y 60 3 0 2 0 3 0 2 0 1 0 1 1 0 MA Y 30 1 0 1 2 0 1 0 2 0 4 0 MA Y 30 3 0 2 0 1 0 1 0 3 0 JU N 11 0 8 0 3 0 6 0 1 0 2 0 7 0 JU N 50 3 0 3 7 0 2 0 4 0 5 0 JU N 90 5 0 3 0 2 0 1 0 4 0 JU L 24 0 6 0 6 0 3 4 0 7 0 4 0 1 2 0 JU L 30 2 0 1 5 0 2 0 3 0 5 0 JU L 90 4 0 1 0 1 0 0 4 0 AU G 73 0 5 0 5 0 1 5 0 8 0 2 0 1 9 0 AU G 50 4 0 2 4 0 1 0 5 0 7 0 AU G 80 4 0 2 0 2 0 2 0 3 0 SE P 14 0 6 0 5 0 1 5 0 1 0 0 2 0 2 8 0 SE P 40 2 0 3 5 0 1 0 3 0 6 0 SE P 60 4 0 1 0 2 0 0 4 0 OC T 20 0 1 7 0 5 0 1 8 0 2 0 0 2 0 6 4 0 OC T 60 3 0 6 2 0 0 5 0 1 4 0 OC T 60 5 0 4 0 1 0 0 7 0 NO V 13 0 3 0 2 0 6 0 9 0 1 0 1 4 0 NO V 20 1 0 2 8 0 1 0 3 0 7 0 NO V 40 3 0 1 0 1 0 1 0 4 0 DE C 16 0 2 0 2 0 5 0 8 0 2 0 9 0 DE C 30 1 0 1 6 0 0 2 0 3 0 DE C 30 2 0 1 0 1 0 0 3 0 me a n 1 7 2 4 5 2 9 9 5 6 5 1 8 1 6 3 me a n 3 1 1 8 2 2 2 8 2 8 4 7 me a n 5 1 3 4 2 1 1 3 6 3 7 st d d e v 18 6 4 6 1 8 9 5 5 2 9 1 6 2 st d d e v 16 1 1 1 6 3 7 1 4 3 7 st d d e v 25 1 1 1 2 5 8 1 3 me d i a n 13 0 3 0 2 0 5 5 5 5 2 0 1 0 0 me d i a n 30 1 0 1 5 5 1 0 2 5 4 5 me d i a n 40 3 5 2 0 1 0 0 3 5 ma x 73 0 1 7 0 6 0 3 4 0 2 0 0 4 0 6 4 0 ma x 60 4 0 6 2 0 2 0 5 0 1 4 0 ma x 90 5 0 4 0 2 0 2 0 7 0 mi n 50 1 0 1 0 3 0 1 0 1 0 5 0 min 10 1 0 5 0 0 1 0 1 0 mi n 20 2 0 1 0 1 0 0 2 0 35 Ta b l e 2 . 1 5 C h l o r o p h y l l a (g/ l ) a t t h e L o w e r C a p e F e a r R i v e r P r o g r a m s t a t i o n s d u r i n g 2 0 1 3 NA V HB B R R M 6 1 M 5 4 M 3 5 M 2 3 M 1 8 NC 1 1 A C D P B B T I C N C F 6 JA N 01 1 1 1 1 2 1 JA N 00 0 0 0 1 FE B 45 4 8 4 5 8 1 1 FE B 44 4 2 3 1 MA R 87 7 4 6 9 1 0 1 5 MA R 42 3 1 3 1 AP R 32 3 4 6 8 6 4 AP R 11 1 1 1 7 MA Y 11 6 7 1 3 9 5 6 MA Y 11 1 1 1 3 JU N 21 1 1 2 7 1 7 1 2 JU N 131 1 1 1 3 JU L 11 1 1 2 2 2 7 JU L 11 1 1 1 1 AU G 1 1 5 1 0 9 1 7 2 1 2 2 AU G 11 1 1 1 4 SE P 11 5 5 8 1 7 2 1 1 8 SE P 22 1 1 1 1 OC T 34 5 5 5 5 4 5 OC T 45 3 2 2 4 NO V 33 4 5 5 6 6 7 NO V 21 2 2 3 4 DE C 32 2 4 7 4 4 4 DE C 11 1 0 1 1 me a n 32 4 5 6 8 9 9 me a n 32 2 1 2 3 st d d e v 22 2 3 3 5 7 6 st d d e v 31 1 1 1 2 me d i a n 32 4 5 6 7 6 7 me d i a n 21 1 1 1 2 ma x 8 7 7 1 0 1 3 1 7 2 1 2 2 ma x 135 4 2 3 7 mi n 01 1 1 1 1 2 1 min 00 0 0 0 1 AN C S A R GS N C 4 0 3 P B L R C R O C 6R C L C O G C O S R BR N H A M NC F 1 1 7 B 2 1 0 C O L S R - W CLVC2SC-CH JA N 22 2 3 8 1 6 2 JA N 31 2 7 2 1 JA N 0101 FE B 55 6 8 3 4 3 FE B 12 1 4 1 1 FE B 2211 MA R 35 3 5 3 4 1 MA R 12 1 5 1 2 MA R 011011 AP R 52 5 8 5 3 1 AP R 12 1 4 1 3 AP R 111136 MA Y 21 2 2 5 1 0 MA Y 02 1 2 1 0 MA Y 114027 JU N 22 2 6 5 2 8 1 3 JU N 11 1 3 2 7 JU N 112217 JU L 81 3 3 2 4 1 JU L 11 2 5 3 6 JU L 000115 AU G 11 3 6 4 9 2 3 AU G 00 1 5 1 1 AU G 1131211 SE P 11 8 6 1 0 1 0 SE P 00 0 1 0 1 SE P 000103 OC T 12 5 9 1 4 1 1 OC T 10 1 1 1 0 OC T 001102 NO V 21 4 3 4 8 0 NO V 10 1 1 0 2 NO V 001214 DE C 1 2 4 1 4 2 3 1 7 1 DE C 21 2 3 1 1 DE C 011113 me a n 52 5 6 1 0 5 1 me a n 11 1 3 1 2 me a n 111115 st d d e v 61 2 3 8 6 1 st d d e v 11 1 2 1 2 st d d e v 111113 me d i a n 32 5 5 7 4 1 me d i a n 11 1 4 1 1 me d i a n 011115 ma x 22 5 8 1 4 2 8 1 7 3 ma x 32 2 7 3 7 ma x 2242311 mi n 11 2 2 2 1 0 mi n 00 0 1 0 0 mi n 000001 36 Ta b l e 2 . 1 6 B i o c h e m i c a l O x y g e n D e m a n d ( m g / l ) a t t h e L o w e r C a p e F e a r R i v e r P r o g r a m s t a t i o n s d u r i n g 2 0 1 3 . 5- D a y B i o c h e m i c a l O x y g e n D e m a n d NC 1 1 A C B B T N C F 1 1 7 B 2 1 0 L V C 2 JA N 1. 3 1 . 6 1 . 3 1 . 2 1 . 4 1 . 4 FE B 1. 0 1 . 4 1 . 1 1 . 3 1 . 1 MA R 1. 7 1 . 1 1 . 0 1 . 3 1 . 3 1 . 7 AP R 1. 6 1 . 5 2 . 1 1 . 3 1 . 3 1 . 7 MA Y JU N 1. 6 1 . 2 1 . 4 1 . 6 1 . 7 2 . 5 JU L 1. 5 1 . 2 2 . 0 1 . 4 1 . 2 AU G 0. 8 0 . 6 0 . 7 1 . 0 0 . 9 1 . 5 SE P 1. 3 1 . 7 2 . 2 OC T 1. 6 1 . 1 1 . 0 0 . 9 1 . 7 1 . 3 NO V 1. 1 0 . 9 1 . 5 1 . 2 1 . 6 1 . 4 DE C 1. 4 2 . 1 0 . 7 1 . 0 0 . 7 me a n 1. 4 1 . 3 1 . 4 1 . 2 1 . 4 1 . 5 st d e v 0. 3 0 . 4 0 . 5 0 . 4 0 . 3 0 . 5 me d i a n 1. 4 1 . 3 1 . 3 1 . 2 1 . 4 1 . 4 ma x 1. 7 2 . 1 2 . 2 2 . 0 1 . 7 2 . 5 mi n 0. 8 0 . 6 0 . 7 0 . 7 0 . 9 0 . 7 20 - D a y B i o c h e m i c a l O x y g e n D e m a n d NC 1 1 A C B B T N C F 1 1 7 B 2 1 0 L V C 2 JA N 4. 0 4 . 1 3 . 8 3 . 0 2 . 8 3 . 2 FE B 3. 5 4 . 5 3 . 4 2 . 9 2 . 9 MA R 4. 2 3 . 1 2 . 9 3 . 2 2 . 6 3 . 6 AP R 4. 0 3 . 7 4 . 8 4 . 0 3 . 6 4 . 4 MA Y JU N 3. 9 3 . 4 4 . 4 4 . 9 4 . 4 5 . 4 JU L 3. 9 3 . 8 4 . 6 4 . 1 3 . 3 AU G 2. 6 2 . 3 2 . 8 2 . 9 3 . 1 7 . 5 SE P 3. 6 4 . 1 4 . 9 OC T 3. 1 3 . 2 3 . 0 3 . 2 4 . 7 3 . 2 NO V 2. 8 2 . 9 4 . 1 3 . 1 3 . 5 3 . 6 DE C 3. 3 4 . 8 2 . 7 3 . 1 2 . 5 me a n 3. 5 3 . 6 3 . 8 3 . 5 3 . 5 4 . 0 st d e v 0. 5 0 . 8 0 . 8 0 . 8 0 . 7 1 . 5 me d i a n 3. 6 3 . 6 3 . 8 3 . 2 3 . 3 3 . 5 ma x 4. 2 4 . 8 4 . 9 4 . 9 4 . 7 7 . 5 mi n 2. 6 2 . 3 2 . 8 2 . 7 2 . 6 2 . 5 37 Ta b l e 2 . 1 7 F e c a l C o l i f o r m ( c f u / 1 0 0 m L ) a n d E n t e r o c o c c u s ( M P N ) a t t h e L o w e r C a p e F e a r R i v e r P r o g r a m s t a t i o n s d u r i n g 2 0 1 3 . EN T E R O C O C C U S NC 1 1 A C D P I C N C F 6 N A V HB BR R M 6 1 M 5 4 M 3 5 M 2 3 M 1 8 JA N 5 5 2 8 2 8 8 2 5 5 5 5 JA N 86 6 3 4 1 2 0 1 0 2 0 FE B 28 1 9 2 8 1 9 5 1 0 5 FE B 98 5 2 3 1 5 2 6 3 5 1 MA R 46 2 8 4 6 3 7 2 8 1 9 8 2 MA R 85 7 5 2 0 1 0 1 0 3 1 AP R 89 1 9 1 7 2 1 0 0 8 2 3 7 3 7 AP R 5 7 4 6 3 1 0 1 0 2 0 MA Y 19 2 8 1 0 3 7 8 2 2 1 7 3 7 MA Y 52 6 3 4 1 3 1 2 0 1 0 JU N 55 9 1 0 1 , 2 7 0 2 4 0 4 6 3 7 1 9 JU N 29 5 1 2 1 9 7 2 0 5 5 JU L 55 1 3 6 8 2 1 0 1 9 1 , 1 8 0 5 5 JU L 54 6 2 9 5 2 7 5 4 1 1 1 4 6 2 1 6 AU G 55 5 5 1 0 3 7 4 6 1 1 8 3 7 AU G 26 9 1 7 5 1 2 1 7 4 2 0 1 0 8 SE P 28 5 5 5 5 1 0 4 6 5 4 6 4 6 SE P 41 3 0 4 1 2 0 5 5 OC T 19 3 7 3 7 5 6 4 7 3 5 5 OC T 30 3 1 5 1 0 5 5 NO V 37 1 9 3 7 8 2 2 7 0 3 7 4 6 NO V 52 0 5 1 0 1 0 1 0 DE C 55 4 6 1 9 1 2 7 1 3 6 1 0 0 4 6 DE C 411 0 5 5 5 5 me a n 4 1 1 1 3 1 5 0 6 1 7 6 2 0 2 4 3 me a n 1 2 9 8 4 6 2 5 6 2 6 4 1 st d d e v 22 2 4 2 3 4 0 6 5 6 8 3 2 7 1 8 st d d e v 15 5 7 7 7 3 1 0 9 3 9 6 0 ma x 89 9 1 0 1 , 2 7 0 2 4 0 2 7 0 1 , 1 8 0 8 2 ma x 54 6 2 9 5 2 7 5 4 1 1 1 4 6 2 1 6 mi n 5 5 1 0 5 5 1 0 5 mi n 51 0 5 5 5 5 Ge o m e a n 33 4 0 4 6 3 5 5 1 8 0 3 7 Ge o m e a n 60 5 8 3 2 2 3 1 3 1 8 AN C S A R GS N C 4 0 3 P B L R C R O C 6R C L C O G C O S R BR N H A M NC F 1 1 7 B 2 1 0 C O L S R W C L V C 2 S C - C H JA N 10 0 2 2 0 1 0 5 5 2 2 0 3 6 0 2 4 0 JA N 40 0 1 2 7 1 0 0 6 4 2 3 0 1 4 5 JA N 28 5 5 5 7 3 4 6 FE B 63 7 7 2 8 1 2 7 3 7 9 1 3 4 0 1 0 0 0 FE B 82 8 2 5 5 7 3 3 3 0 7 2 8 FE B 24 4 6 4 6 4 25073 MA R 13 6 6 4 1 9 1 4 5 1 6 3 1 1 8 9 1 MA R 73 6 4 1 0 9 8 2 1 4 5 2 1 0 MA R 10 1 9 1 0 1 9 2 1 0 3 7 AP R 82 1 4 5 9 1 7 3 3 1 0 1 6 3 5 5 AP R 82 4 6 1 0 3 7 2 1 0 1 9 9 AP R 13 6 1 4 5 7 3 5 5 7 3 7 3 MA Y 15 4 2 5 0 2 7 0 2 1 0 1 0 9 1 0 3 7 0 MA Y 11 8 2 4 0 8 2 5 5 1 , 0 0 0 2 3 0 MA Y 64 2 8 1 9 2 8 1 0 0 4 6 JU N 47 0 2 7 0 1 0 0 3 7 0 2 3 0 4 4 0 3 , 3 0 0 JU N 64 6 4 4 6 6 4 1 , 2 7 0 4 5 5 JU N 72 8 1 4 5 1 0 9 1 , 2 7 0 6 4 4 5 5 JU L 81 9 1 0 0 4 0 0 1 , 8 2 0 5 , 6 0 0 3 7 0 1 5 4 JU L 10 9 1 0 9 5 5 1 1 8 6 , 0 0 0 1 , 0 9 0 JU L 19 3 8 0 3 7 5 , 9 0 0 3 6 4 7 2 8 AU G 1, 0 9 0 1 , 0 0 0 1 0 9 2 1 0 7 2 8 5 4 6 9 1 0 AU G 10 0 2 2 0 2 3 0 2 3 0 3 6 0 2 2 0 AU G 55 2 3 5 2 8 0 1 3 6 3 , 0 0 0 4 5 5 SE P 30 0 2 5 0 1 3 6 5 3 0 5 7 0 4 6 2 , 2 0 0 SE P 16 3 1 6 3 8 2 1 0 9 3 5 0 4 2 0 SE P 28 4 6 8 2 6 4 9 1 7 3 OC T 25 0 5 4 6 2 7 0 4 9 0 8 1 9 1 , 8 2 0 6 0 0 OC T 82 3 7 1 0 0 9 1 2 9 0 1 4 5 OC T 64 5 5 1 9 1 5 4 5 5 9 1 NO V 46 1 4 5 2 0 0 2 0 0 1 0 0 8 2 1 0 9 NO V 19 1 7 2 1 0 9 9 1 2 3 0 1 1 8 NO V 37 1 9 1 1 8 1 1 8 1 0 9 2 2 0 DE C 16 3 3 5 0 1 1 8 6 4 1 , 4 6 0 1 1 , 0 0 0 2 0 0 DE C 21 0 2 3 0 4 4 0 8 2 3 2 0 2 4 0 DE C 37 6 3 7 3 4 0 2 5 0 2 1 0 1 8 1 me a n 3 5 4 3 3 9 1 5 4 3 5 0 8 6 7 1 , 2 7 5 7 6 9 m e a n 1 2 5 1 3 0 1 1 8 9 1 8 9 5 3 5 0 m e a n 1 2 1 1 4 8 1 0 1 7 9 9 3 8 3 2 0 7 st d d e v 31 9 2 7 0 1 0 8 4 7 1 1 , 4 7 9 2 , 9 6 8 9 6 2 st d d e v 95 7 1 1 1 0 4 7 1 , 5 7 4 2 7 8 st d d e v 19 3 1 8 1 1 0 0 1 , 7 3 7 7 9 4 2 1 3 ma x 63 7 1 , 0 0 0 4 0 0 1 , 8 2 0 5 , 6 0 0 1 1 , 0 0 0 3 , 3 0 0 ma x 40 0 2 4 0 4 4 0 2 3 0 6 , 0 0 0 1 , 0 9 0 ma x 72 8 6 3 7 3 4 0 5 , 9 0 0 3 , 0 0 0 7 2 8 mi n 46 6 4 1 0 3 7 9 1 1 0 5 5 mi n 19 3 7 1 0 3 7 1 4 5 1 1 8 mi n 10 5 1 0 1 9 5 5 3 7 Ge o m e a n 23 3 2 5 3 1 0 7 1 8 9 3 7 2 2 7 1 3 6 7 Ge o m e a n 99 1 0 9 8 3 8 3 4 3 6 2 7 5 Ge o m e a n 57 6 8 6 2 1 5 6 1 5 7 1 2 6 38 051015202530 NA V H B B R R M 6 1 M 5 4 M 3 5 M 2 3 M 1 8 N C F 6 S C - C H Salinity (PSU) Fi g u r e 2 . 1 S a l i n i t y a t t h e L o w e r C a p e F e ar R i v e r P r o g r a m e s t u a r i n e s t a t i o n s , 1 9 9 5 - 2 0 1 2 ve r s u s 2 0 1 3 . 1995-2012 2013 39 0123456789 NC 1 1 A C D P I C N A V H B B R R M 6 1 M 5 4 M 3 5 M 2 3 M 1 8 N C F 1 1 7 N C F 6 B 2 1 0 B B T Dissolved Oxygen (mg/L) Fi g u r e 2 . 2 D i s s o l v e d O x y g e n a t t h e L o w e r C a pe F e a r R i v e r P r o g r a m m a i n s t e m s t a t i o n s , 19 9 5 - 2 0 1 2 v e r s u s 2 0 1 3 . 1995-2012 2013 40 051015202530 NC 1 1 A C D P I C N A V H B B R R M 6 1 M 5 4 M 3 5 M 2 3 M 1 8 N C F 1 1 7 N C F 6 B 2 1 0 B B T Field Turbidity (NTU) Fi g u r e 2 . 3 F i e l d T u r b i d i t y a t t h e L o w e r C a pe F e a r R i v e r P r o g r a m m a i n s t e m s t a t i o n s , 19 9 5 - 2 0 1 2 v e r s u s 2 0 1 3 . 1995-2012 2013 41 0 20 0 40 0 60 0 80 0 10 0 0 12 0 0 14 0 0 16 0 0 NC 1 1 A C D P I C N A V H B B R R M 6 1 M 5 4 M 3 5 M 2 3 M 1 8 N C F 1 1 7 N C F 6 B 2 1 0 Total Nitrogen (g/L) Fi g u r e 2 . 4 T o t a l N i t r o g e n a t t h e L o w e r C a p e F e a r R i v e r P r o g r a m m a i n s t e m s t a t i o n s , 1 9 9 5 - 20 1 2 v e r s u s 2 0 1 3 . 1995-2012 2013 42 050 10 0 15 0 20 0 25 0 NC 1 1 A C D P I C N A V H B B R R M 6 1 M 5 4 M 3 5 M 2 3 M 1 8 N C F 1 1 7 N C F 6 B 2 1 0 Total Phosphorus (g/L) Fi g u r e 2 . 5 T o t a l P h o s p h o r u s a t t h e L o w e r C a pe F e a r R i v e r P r o g r a m m a i n s t e m s t a t i o n s , 19 9 5 - 2 0 1 2 v e r s u s 2 0 1 3 . 1995-2012 2013 43 012345678910 NC 1 1 A C D P I C N A V H B B R R M 6 1 M 5 4 M 3 5 M 2 3 M 1 8 N C F 1 1 7 N C F 6 B 2 1 0 B B T Chlorophyll a(g/L) Fi g u r e 2 . 6 C h l o r o p h y l l a at t h e L o w e r C a p e F e a r R i v e r P r o g r a m m a i n s t e m s t a t i o n s , 19 9 5 - 2 0 1 2 v e r s u s 2 0 1 3 . 1995-2012 2013 44