HomeMy WebLinkAbout310 Metro Circle RV and Boat Storage TRC Comments
Boat and RV Storage – 310 Metro Circle – TRC Review
Page | 1
To: Tim Littlejohn, Spartan Construction Management LLC
From: Zach Dickerson, Senior Planner
Date: October 2, 2024 TRC
PID#: R02300-002-032-000
Egov# SITECN-24-000036
Subject: 310 Metro Circle – RV and Boat Storage - TRC Review
The following comments have been received for the October 2, 2024, TRC meeting. Additional comments
may be made upon further review of subsequent revisions.
Please note: following the TRC meeting, a revised preliminary plan addressing each of the below items
must be resubmitted prior to receiving preliminary plan approval.
Planning, Zach Dickerson 910-798-7450
1. General Comments
a. Zoning is I-2, use is by-right in the I-2 district
b. I went ahead and included the page showing the parking layout in the document with the
rest of the site plan.
c. Will there be an employee/security on-site?
d. Per Bill Wilder with Duke Energy, the large easement on the site will prevent the site from
being developed as planned on this site plan. Please confirm with Mr. Wilder on how to
proceed with the development of this site.
2. UDO Section 5.1, Parking and Loading
a. If there is intended to be an employee on site, where will they park?
3. UDO Section 5.2, Traffic, Access and Connectivity
a. Please note that no building permit for any structure shall be issued which requires
NCDOT approval for a Driveway Permit until NCDOT has issued the permit approval.
Evidence of approval shall accompany the application for building permit.
Boat and RV Storage – 310 Metro Circle – TRC Review
Page | 2
4. UDO Section 5.3, Tree Retention
a. It does not appear that there are any trees on the site- please confirm.
b. If there are any trees to be removed on site, please apply for a tree removal permit.
5. UDO Section 5.4, Landscaping and Buffering
a. The UDO requires 15 trees to be planted or preserved per acre disturbed. Because there
are no trees on site to retain, they will need to be planted somewhere on site.
b. Please include square footage calculations on the site data table for street yard plantings.
6. UDO Section 5.5, Lighting
a. Is any lighting planned for this site?
b. If so, please submit a lighting plan for this site- it is not required prior to TRC approval but
will be required to other permits being issued.
7. UDO Section 5.6, Signs
a. For any signs on the site, please submit for a sign permit, referencing Section 5.6 of the
UDO for standards.
8. UDO Section 5.7, Conservation Resources
a. Per the New Hanover County Conservation Resource map, there are no Conservation
Resources on the property.
NHC Fire Services, Ray Griswold 910-798-7448
1. Fire Finals Required
2. Portable fire extinguisher requirement per NCFPA 10
3. Install a fire hydrant on the roadway within 250 feet of the project. At the gate if possible across
the street from the gate is also allowable.
4. Get permission to store vehicles, boats, campers, etc. under the power lines from Duke Energy
or the owner of the power line. Present letter to TRC.
NHC Engineering, Galen Jamison 910-798-7072
1. A land disturbing issued by the County is required for this project. Please digitally submit the
permit application documentation with requisite review fees for County issued permit directly
to gjamison@nhcgov.com. Application and forms can be found at
https://www.nhcgov.com/249/Sediment-Erosion-Control.
Boat and RV Storage – 310 Metro Circle – TRC Review
Page | 3
2. The NHC stormwater ordinance is not applicable as the site has a master stormwater permit. A
plan revision consisting of a site plan and applicable calculations for stormwater conveyance, if
proposed, will be required.
3. Please contact the State for the stormwater permit requirements. It is assumed a modification
to SW8 001005 permit with will be required.
NHC Environmental Health, Dustin Fenske 910-798-6732
1. Septic and well review is not necessary since there are no structures proposed on this parcel.
NHC Addressing, Katherine May 910-798-7443
1. No comments.
NHC Soil & Water, Brian Dadson 910-798-7138
1. See attachment.
Cape Fear Public Utility Authority, Bernice Johnson 910-332-6620
1. CFPUA TRC Comments provided are preliminary comments only.
2. Utility Plan review required by CFPUA.
3. CFPUA is moving toward becoming paperless. When ready to submit plan review package,
upload all documents to https://www.cfpua.org/FormCenter/Engineering-3/Engineering-Plan-
Review-103.
4. CFPUA water available.
NCDOT, Nick Drees 910-343-3915
1. No comments
WMPO, Greer Templer 910-341-0107
1. See attachment.
Army Corps of Engineers, Brad Shaver 910-251-4611
1. No comments.
Comments not received at this time from:
Emergency Services & E911, Steve Still
NCDEQ, Chad Coburn
USACE, Rachel Capito
Boat and RV Storage – 310 Metro Circle – TRC Review
Page | 4
NCDEMLR, Dan Sams
DCM, Tanya Pietila
TO: New Hanover County Planning Department, September 20th, 2024
FROM: Dru Harrison, Director
RE: Metro Circle - 310 - RV and Boat Storage
I HAVE REVIEWED THIS PLAN AS REQUESTED AND HAVE THESE
COMMENTS: The soils are predominantly Kureb sand (Kr).
According to the booklet, “Wilmington/New Hanover Classification of soils for
Septic Tank Suitability, Kureb are Class I soils.
The Soil Survey of New Hanover County lists Kureb as excessively well drained.
Kureb are on the Hydric Soils “B” list which means there may be areas of wetland
included in the mapping units. An adequate drainage and maintenance plan is needed
for suitable housing.
The U.S. Army Corps of Engineers has federal jurisdiction over 404 Permits and the
NC Department of Environmental Quality, Water Quality Division, has state
jurisdiction over 401 Permits under the Clean Water Act. Before disturbing possible
wetland areas, developers should contact these agencies to stay in compliance with
State and Federal regulations.
United States
Department of
Agriculture
A product of the National
Cooperative Soil Survey,
a joint effort of the United
States Department of
Agriculture and other
Federal agencies, State
agencies including the
Agricultural Experiment
Stations, and local
participants
Custom Soil Resource
Report for
New Hanover
County, North
Carolina
Metro Circle - 310 - RV and Boat
Storage
Natural
Resources
Conservation
Service
September 20, 2024
Preface
Soil surveys contain information that affects land use planning in survey areas.
They highlight soil limitations that affect various land uses and provide information
about the properties of the soils in the survey areas. Soil surveys are designed for
many different users, including farmers, ranchers, foresters, agronomists, urban
planners, community officials, engineers, developers, builders, and home buyers.
Also, conservationists, teachers, students, and specialists in recreation, waste
disposal, and pollution control can use the surveys to help them understand,
protect, or enhance the environment.
Various land use regulations of Federal, State, and local governments may impose
special restrictions on land use or land treatment. Soil surveys identify soil
properties that are used in making various land use or land treatment decisions.
The information is intended to help the land users identify and reduce the effects of
soil limitations on various land uses. The landowner or user is responsible for
identifying and complying with existing laws and regulations.
Although soil survey information can be used for general farm, local, and wider area
planning, onsite investigation is needed to supplement this information in some
cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/
portal/nrcs/main/soils/health/) and certain conservation and engineering
applications. For more detailed information, contact your local USDA Service Center
(https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil
Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?
cid=nrcs142p2_053951).
Great differences in soil properties can occur within short distances. Some soils are
seasonally wet or subject to flooding. Some are too unstable to be used as a
foundation for buildings or roads. Clayey or wet soils are poorly suited to use as
septic tank absorption fields. A high water table makes a soil poorly suited to
basements or underground installations.
The National Cooperative Soil Survey is a joint effort of the United States
Department of Agriculture and other Federal agencies, State agencies including the
Agricultural Experiment Stations, and local agencies. The Natural Resources
Conservation Service (NRCS) has leadership for the Federal part of the National
Cooperative Soil Survey.
Information about soils is updated periodically. Updated information is available
through the NRCS Web Soil Survey, the site for official soil survey information.
The U.S. Department of Agriculture (USDA) prohibits discrimination in all its
programs and activities on the basis of race, color, national origin, age, disability,
and where applicable, sex, marital status, familial status, parental status, religion,
sexual orientation, genetic information, political beliefs, reprisal, or because all or a
part of an individual's income is derived from any public assistance program. (Not
all prohibited bases apply to all programs.) Persons with disabilities who require
2
alternative means for communication of program information (Braille, large print,
audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice
and TDD). To file a complaint of discrimination, write to USDA, Director, Office of
Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or
call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity
provider and employer.
3
Contents
Preface....................................................................................................................2
How Soil Surveys Are Made..................................................................................5
Soil Map..................................................................................................................8
Soil Map................................................................................................................9
Legend................................................................................................................10
Map Unit Legend................................................................................................11
Map Unit Descriptions.........................................................................................11
New Hanover County, North Carolina.............................................................13
Kr—Kureb sand, 1 to 8 percent slopes.......................................................13
References............................................................................................................15
4
How Soil Surveys Are Made
Soil surveys are made to provide information about the soils and miscellaneous
areas in a specific area. They include a description of the soils and miscellaneous
areas and their location on the landscape and tables that show soil properties and
limitations affecting various uses. Soil scientists observed the steepness, length,
and shape of the slopes; the general pattern of drainage; the kinds of crops and
native plants; and the kinds of bedrock. They observed and described many soil
profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The
profile extends from the surface down into the unconsolidated material in which the
soil formed or from the surface down to bedrock. The unconsolidated material is
devoid of roots and other living organisms and has not been changed by other
biological activity.
Currently, soils are mapped according to the boundaries of major land resource
areas (MLRAs). MLRAs are geographically associated land resource units that
share common characteristics related to physiography, geology, climate, water
resources, soils, biological resources, and land uses (USDA, 2006). Soil survey
areas typically consist of parts of one or more MLRA.
The soils and miscellaneous areas in a survey area occur in an orderly pattern that
is related to the geology, landforms, relief, climate, and natural vegetation of the
area. Each kind of soil and miscellaneous area is associated with a particular kind
of landform or with a segment of the landform. By observing the soils and
miscellaneous areas in the survey area and relating their position to specific
segments of the landform, a soil scientist develops a concept, or model, of how they
were formed. Thus, during mapping, this model enables the soil scientist to predict
with a considerable degree of accuracy the kind of soil or miscellaneous area at a
specific location on the landscape.
Commonly, individual soils on the landscape merge into one another as their
characteristics gradually change. To construct an accurate soil map, however, soil
scientists must determine the boundaries between the soils. They can observe only
a limited number of soil profiles. Nevertheless, these observations, supplemented
by an understanding of the soil-vegetation-landscape relationship, are sufficient to
verify predictions of the kinds of soil in an area and to determine the boundaries.
Soil scientists recorded the characteristics of the soil profiles that they studied. They
noted soil color, texture, size and shape of soil aggregates, kind and amount of rock
fragments, distribution of plant roots, reaction, and other features that enable them
to identify soils. After describing the soils in the survey area and determining their
properties, the soil scientists assigned the soils to taxonomic classes (units).
Taxonomic classes are concepts. Each taxonomic class has a set of soil
characteristics with precisely defined limits. The classes are used as a basis for
comparison to classify soils systematically. Soil taxonomy, the system of taxonomic
classification used in the United States, is based mainly on the kind and character
of soil properties and the arrangement of horizons within the profile. After the soil
5
scientists classified and named the soils in the survey area, they compared the
individual soils with similar soils in the same taxonomic class in other areas so that
they could confirm data and assemble additional data based on experience and
research.
The objective of soil mapping is not to delineate pure map unit components; the
objective is to separate the landscape into landforms or landform segments that
have similar use and management requirements. Each map unit is defined by a
unique combination of soil components and/or miscellaneous areas in predictable
proportions. Some components may be highly contrasting to the other components
of the map unit. The presence of minor components in a map unit in no way
diminishes the usefulness or accuracy of the data. The delineation of such
landforms and landform segments on the map provides sufficient information for the
development of resource plans. If intensive use of small areas is planned, onsite
investigation is needed to define and locate the soils and miscellaneous areas.
Soil scientists make many field observations in the process of producing a soil map.
The frequency of observation is dependent upon several factors, including scale of
mapping, intensity of mapping, design of map units, complexity of the landscape,
and experience of the soil scientist. Observations are made to test and refine the
soil-landscape model and predictions and to verify the classification of the soils at
specific locations. Once the soil-landscape model is refined, a significantly smaller
number of measurements of individual soil properties are made and recorded.
These measurements may include field measurements, such as those for color,
depth to bedrock, and texture, and laboratory measurements, such as those for
content of sand, silt, clay, salt, and other components. Properties of each soil
typically vary from one point to another across the landscape.
Observations for map unit components are aggregated to develop ranges of
characteristics for the components. The aggregated values are presented. Direct
measurements do not exist for every property presented for every map unit
component. Values for some properties are estimated from combinations of other
properties.
While a soil survey is in progress, samples of some of the soils in the area generally
are collected for laboratory analyses and for engineering tests. Soil scientists
interpret the data from these analyses and tests as well as the field-observed
characteristics and the soil properties to determine the expected behavior of the
soils under different uses. Interpretations for all of the soils are field tested through
observation of the soils in different uses and under different levels of management.
Some interpretations are modified to fit local conditions, and some new
interpretations are developed to meet local needs. Data are assembled from other
sources, such as research information, production records, and field experience of
specialists. For example, data on crop yields under defined levels of management
are assembled from farm records and from field or plot experiments on the same
kinds of soil.
Predictions about soil behavior are based not only on soil properties but also on
such variables as climate and biological activity. Soil conditions are predictable over
long periods of time, but they are not predictable from year to year. For example,
soil scientists can predict with a fairly high degree of accuracy that a given soil will
have a high water table within certain depths in most years, but they cannot predict
that a high water table will always be at a specific level in the soil on a specific date.
After soil scientists located and identified the significant natural bodies of soil in the
survey area, they drew the boundaries of these bodies on aerial photographs and
Custom Soil Resource Report
6
identified each as a specific map unit. Aerial photographs show trees, buildings,
fields, roads, and rivers, all of which help in locating boundaries accurately.
Custom Soil Resource Report
7
Soil Map
The soil map section includes the soil map for the defined area of interest, a list of
soil map units on the map and extent of each map unit, and cartographic symbols
displayed on the map. Also presented are various metadata about data used to
produce the map, and a description of each soil map unit.
8
9
Custom Soil Resource Report
Soil Map
37
9
8
1
3
0
37
9
8
1
6
0
37
9
8
1
9
0
37
9
8
2
2
0
37
9
8
2
5
0
37
9
8
2
8
0
37
9
8
1
3
0
37
9
8
1
6
0
37
9
8
1
9
0
37
9
8
2
2
0
37
9
8
2
5
0
37
9
8
2
8
0
225880 225910 225940 225970 226000 226030 226060 226090 226120
225850 225880 225910 225940 225970 226000 226030 226060 226090 226120
34° 17' 23'' N
77
°
5
8
'
4
1
'
'
W
34° 17' 23'' N
77
°
5
8
'
3
0
'
'
W
34° 17' 17'' N
77
°
5
8
'
4
1
'
'
W
34° 17' 17'' N
77
°
5
8
'
3
0
'
'
W
N
Map projection: Web Mercator Corner coordinates: WGS84 Edge tics: UTM Zone 18N WGS84
0 50 100 200 300
Feet
0 15 30 60 90
Meters
Map Scale: 1:1,270 if printed on A landscape (11" x 8.5") sheet.
Soil Map may not be valid at this scale.
MAP LEGEND MAP INFORMATION
Area of Interest (AOI)
Area of Interest (AOI)
Soils
Soil Map Unit Polygons
Soil Map Unit Lines
Soil Map Unit Points
Special Point Features
Blowout
Borrow Pit
Clay Spot
Closed Depression
Gravel Pit
Gravelly Spot
Landfill
Lava Flow
Marsh or swamp
Mine or Quarry
Miscellaneous Water
Perennial Water
Rock Outcrop
Saline Spot
Sandy Spot
Severely Eroded Spot
Sinkhole
Slide or Slip
Sodic Spot
Spoil Area
Stony Spot
Very Stony Spot
Wet Spot
Other
Special Line Features
Water Features
Streams and Canals
Transportation
Rails
Interstate Highways
US Routes
Major Roads
Local Roads
Background
Aerial Photography
The soil surveys that comprise your AOI were mapped at
1:15,800.
Warning: Soil Map may not be valid at this scale.
Enlargement of maps beyond the scale of mapping can cause
misunderstanding of the detail of mapping and accuracy of soil
line placement. The maps do not show the small areas of
contrasting soils that could have been shown at a more detailed
scale.
Please rely on the bar scale on each map sheet for map
measurements.
Source of Map: Natural Resources Conservation Service
Web Soil Survey URL:
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator
projection, which preserves direction and shape but distorts
distance and area. A projection that preserves area, such as the
Albers equal-area conic projection, should be used if more
accurate calculations of distance or area are required.
This product is generated from the USDA-NRCS certified data as
of the version date(s) listed below.
Soil Survey Area: New Hanover County, North Carolina
Survey Area Data: Version 25, Sep 13, 2023
Soil map units are labeled (as space allows) for map scales
1:50,000 or larger.
Date(s) aerial images were photographed: Nov 8, 2022—Dec 1,
2022
The orthophoto or other base map on which the soil lines were
compiled and digitized probably differs from the background
imagery displayed on these maps. As a result, some minor
shifting of map unit boundaries may be evident.
Custom Soil Resource Report
10
Map Unit Legend
Map Unit Symbol Map Unit Name Acres in AOI Percent of AOI
Kr Kureb sand, 1 to 8 percent
slopes
3.2 100.0%
Totals for Area of Interest 3.2 100.0%
Map Unit Descriptions
The map units delineated on the detailed soil maps in a soil survey represent the
soils or miscellaneous areas in the survey area. The map unit descriptions, along
with the maps, can be used to determine the composition and properties of a unit.
A map unit delineation on a soil map represents an area dominated by one or more
major kinds of soil or miscellaneous areas. A map unit is identified and named
according to the taxonomic classification of the dominant soils. Within a taxonomic
class there are precisely defined limits for the properties of the soils. On the
landscape, however, the soils are natural phenomena, and they have the
characteristic variability of all natural phenomena. Thus, the range of some
observed properties may extend beyond the limits defined for a taxonomic class.
Areas of soils of a single taxonomic class rarely, if ever, can be mapped without
including areas of other taxonomic classes. Consequently, every map unit is made
up of the soils or miscellaneous areas for which it is named and some minor
components that belong to taxonomic classes other than those of the major soils.
Most minor soils have properties similar to those of the dominant soil or soils in the
map unit, and thus they do not affect use and management. These are called
noncontrasting, or similar, components. They may or may not be mentioned in a
particular map unit description. Other minor components, however, have properties
and behavioral characteristics divergent enough to affect use or to require different
management. These are called contrasting, or dissimilar, components. They
generally are in small areas and could not be mapped separately because of the
scale used. Some small areas of strongly contrasting soils or miscellaneous areas
are identified by a special symbol on the maps. If included in the database for a
given area, the contrasting minor components are identified in the map unit
descriptions along with some characteristics of each. A few areas of minor
components may not have been observed, and consequently they are not
mentioned in the descriptions, especially where the pattern was so complex that it
was impractical to make enough observations to identify all the soils and
miscellaneous areas on the landscape.
The presence of minor components in a map unit in no way diminishes the
usefulness or accuracy of the data. The objective of mapping is not to delineate
pure taxonomic classes but rather to separate the landscape into landforms or
landform segments that have similar use and management requirements. The
delineation of such segments on the map provides sufficient information for the
development of resource plans. If intensive use of small areas is planned, however,
onsite investigation is needed to define and locate the soils and miscellaneous
areas.
Custom Soil Resource Report
11
An identifying symbol precedes the map unit name in the map unit descriptions.
Each description includes general facts about the unit and gives important soil
properties and qualities.
Soils that have profiles that are almost alike make up a soil series. Except for
differences in texture of the surface layer, all the soils of a series have major
horizons that are similar in composition, thickness, and arrangement.
Soils of one series can differ in texture of the surface layer, slope, stoniness,
salinity, degree of erosion, and other characteristics that affect their use. On the
basis of such differences, a soil series is divided into soil phases. Most of the areas
shown on the detailed soil maps are phases of soil series. The name of a soil phase
commonly indicates a feature that affects use or management. For example, Alpha
silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.
Some map units are made up of two or more major soils or miscellaneous areas.
These map units are complexes, associations, or undifferentiated groups.
A complex consists of two or more soils or miscellaneous areas in such an intricate
pattern or in such small areas that they cannot be shown separately on the maps.
The pattern and proportion of the soils or miscellaneous areas are somewhat similar
in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.
An association is made up of two or more geographically associated soils or
miscellaneous areas that are shown as one unit on the maps. Because of present
or anticipated uses of the map units in the survey area, it was not considered
practical or necessary to map the soils or miscellaneous areas separately. The
pattern and relative proportion of the soils or miscellaneous areas are somewhat
similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.
An undifferentiated group is made up of two or more soils or miscellaneous areas
that could be mapped individually but are mapped as one unit because similar
interpretations can be made for use and management. The pattern and proportion
of the soils or miscellaneous areas in a mapped area are not uniform. An area can
be made up of only one of the major soils or miscellaneous areas, or it can be made
up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.
Some surveys include miscellaneous areas. Such areas have little or no soil
material and support little or no vegetation. Rock outcrop is an example.
Custom Soil Resource Report
12
New Hanover County, North Carolina
Kr—Kureb sand, 1 to 8 percent slopes
Map Unit Setting
National map unit symbol: 3wr7
Elevation: 0 to 20 feet
Mean annual precipitation: 42 to 58 inches
Mean annual air temperature: 61 to 64 degrees F
Frost-free period: 190 to 270 days
Farmland classification: Not prime farmland
Map Unit Composition
Kureb and similar soils:85 percent
Minor components:5 percent
Estimates are based on observations, descriptions, and transects of the mapunit.
Description of Kureb
Setting
Landform:Ridges on marine terraces, rims on carolina bays
Landform position (two-dimensional):Summit, shoulder
Landform position (three-dimensional):Crest
Down-slope shape:Convex
Across-slope shape:Convex
Parent material:Eolian sands and/or sandy fluviomarine deposits
Typical profile
A - 0 to 3 inches: sand
E - 3 to 26 inches: sand
C/Bh - 26 to 89 inches: sand
Properties and qualities
Slope:0 to 6 percent
Depth to restrictive feature:More than 80 inches
Drainage class:Excessively drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat):High to very high (5.95
to 19.98 in/hr)
Depth to water table:More than 80 inches
Frequency of flooding:None
Frequency of ponding:None
Available water supply, 0 to 60 inches: Very low (about 1.8 inches)
Interpretive groups
Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 7s
Hydrologic Soil Group: A
Ecological site: F153BY010NC - Dry Sands, F153AY010NC - Dry Sands
Hydric soil rating: No
Minor Components
Leon
Percent of map unit:5 percent
Landform:Flats on marine terraces
Custom Soil Resource Report
13
Down-slope shape:Linear
Across-slope shape:Concave
Ecological site:F153BY070NC - Wet Spodosol Flats and Depressions,
F153AY070NC - Wet Spodosol Flats and Depressions
Hydric soil rating: Yes
Custom Soil Resource Report
14
References
American Association of State Highway and Transportation Officials (AASHTO).
2004. Standard specifications for transportation materials and methods of sampling
and testing. 24th edition.
American Society for Testing and Materials (ASTM). 2005. Standard classification of
soils for engineering purposes. ASTM Standard D2487-00.
Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of
wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife
Service FWS/OBS-79/31.
Federal Register. July 13, 1994. Changes in hydric soils of the United States.
Federal Register. September 18, 2002. Hydric soils of the United States.
Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric
soils in the United States.
National Research Council. 1995. Wetlands: Characteristics and boundaries.
Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service.
U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/
nrcs/detail/national/soils/?cid=nrcs142p2_054262
Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for
making and interpreting soil surveys. 2nd edition. Natural Resources Conservation
Service, U.S. Department of Agriculture Handbook 436. http://
www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577
Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of
Agriculture, Natural Resources Conservation Service. http://
www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580
Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and
Delaware Department of Natural Resources and Environmental Control, Wetlands
Section.
United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of
Engineers wetlands delineation manual. Waterways Experiment Station Technical
Report Y-87-1.
United States Department of Agriculture, Natural Resources Conservation Service.
National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/
home/?cid=nrcs142p2_053374
United States Department of Agriculture, Natural Resources Conservation Service.
National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/
detail/national/landuse/rangepasture/?cid=stelprdb1043084
15
United States Department of Agriculture, Natural Resources Conservation Service.
National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/
nrcs/detail/soils/scientists/?cid=nrcs142p2_054242
United States Department of Agriculture, Natural Resources Conservation Service.
2006. Land resource regions and major land resource areas of the United States,
the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook
296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?
cid=nrcs142p2_053624
United States Department of Agriculture, Soil Conservation Service. 1961. Land
capability classification. U.S. Department of Agriculture Handbook 210. http://
www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf
Custom Soil Resource Report
16
MEMORANDUM
To: New Hanover County Technical Review Committee
Date: 9/19/2024
Subject: 310 Metro Circle - RV and Boat Storage
NCDOT Projects:
• I-6037: pavement and bridge rehabilitation on I-140 from US 421 to I-40 schedule for
construction in 2028 and will occur within a mile of the site location.
WMPO 2045 Projects: N/A
New Hanover County: N/A
TIA: Based on the 11th edition ITE Trip Generation Manual, a TIA is not required.
Land Use (ITE Code) Intensity Unit 24 Hour
Volumes
AM Peak
Hour Trips
PM Peak
Hour Trips
Marina (420) 76 Berths 183 9 15
*Per NCDOT Division 3 Traffic Unit